Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
2.
Emerg Infect Dis ; 27(8): 2224-2227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34287138

RESUMEN

Two variants of highly pathogenic avian influenza A(H5N8) virus were detected in dead poultry in Western Siberia, Russia, during August and September 2020. One variant was represented by viruses of clade 2.3.4.4b and the other by a novel reassortant between clade 2.3.4.4b and Eurasian low pathogenicity avian influenza viruses circulating in wild birds.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , Brotes de Enfermedades , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Virus Reordenados/genética , Federación de Rusia/epidemiología , Siberia/epidemiología
3.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32350072

RESUMEN

To assess the current status of influenza A viruses of swine (IAVs-S) throughout Japan and to investigate how these viruses persisted and evolve on pig farms, we genetically characterized IAVs-S isolated during 2015 to 2019. Nasal swab samples collected through active surveillance and lung tissue samples collected for diagnosis yielded 424 IAVs-S, comprising 78 H1N1, 331 H1N2, and 15 H3N2 viruses, from farms in 21 sampled prefectures in Japan. Phylogenetic analyses of surface genes revealed that the 1A.1 classical swine H1 lineage has evolved uniquely since the late 1970s among pig populations in Japan. During 2015 to 2019, A(H1N1)pdm09 viruses repeatedly became introduced into farms and reassorted with endemic H1N2 and H3N2 IAVs-S. H3N2 IAVs-S isolated during 2015 to 2019 formed a clade that originated from 1999-2000 human seasonal influenza viruses; this situation differs from previous reports, in which H3N2 IAVs-S derived from human seasonal influenza viruses were transmitted sporadically from humans to swine but then disappeared without becoming established within the pig population. At farms where IAVs-S were frequently isolated for at least 3 years, multiple introductions of IAVs-S with phylogenetically distinct hemagglutinin (HA) genes occurred. In addition, at one farm, IAVs-S derived from a single introduction persisted for at least 3 years and carried no mutations at the deduced antigenic sites of the hemagglutinin protein, except for one at the antigenic site (Sa). Our results extend our understanding regarding the status of IAVs-S currently circulating in Japan and how they genetically evolve at the farm level.IMPORTANCE Understanding the current status of influenza A viruses of swine (IAVs-S) and their evolution at the farm level is important for controlling these pathogens. Efforts to monitor IAVs-S during 2015 to 2019 yielded H1N1, H1N2, and H3N2 viruses. H1 genes in Japanese swine formed a unique clade in the classical swine H1 lineage of 1A.1, and H3 genes originating from 1999-2000 human seasonal influenza viruses appear to have become established among Japanese swine. A(H1N1)pdm09-derived H1 genes became introduced repeatedly and reassorted with endemic IAVs-S, resulting in various combinations of surface and internal genes among pig populations in Japan. At the farm level, multiple introductions of IAVs-S with phylogenetically distinct HA sequences occurred, or IAVs-S derived from a single introduction have persisted for at least 3 years with only a single mutation at the antigenic site of the HA protein. Continued monitoring of IAVs-S is necessary to update and maximize control strategies.


Asunto(s)
Evolución Molecular , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/genética , Filogenia , Enfermedades de los Porcinos/genética , Porcinos/virología , Animales , Humanos , Japón , Infecciones por Orthomyxoviridae/virología , Enfermedades de los Porcinos/virología
4.
Arch Virol ; 164(2): 457-472, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30415389

RESUMEN

Surveillance studies of influenza A virus of swine (IAV-S) have accumulated information regarding IAVs-S circulating in Thailand, but how IAVs-S evolve within a farm remains unclear. In the present study, we isolated 82 A(H1N1)pdm09 and 87 H3N2 viruses from four farms from 2011 through 2017. We then phylogenetically and antigenically analyzed the isolates to elucidate their evolution within each farm. Phylogenetic analysis demonstrated multiple introductions of A(H1N1)pdm09 viruses that resembled epidemic A(H1N1)pdm09 strains in humans in Thailand, and they reassorted with H3N2 viruses as well as other A(H1N1)pdm09 viruses. Antigenic analysis revealed that the viruses had acquired antigenic diversity either by accumulating substitutions in the hemagglutinin protein or through the introduction of IAV-S strains with different antigenicity. Our results, obtained through continuous longitudinal surveillance, revealed that IAV-S can be maintained on a pig farm over several years through the generation of antigenic diversity due to the accumulation of mutations, introduction of new strains, and reassortment events.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Variación Antigénica , Variación Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Estudios Longitudinales , Infecciones por Orthomyxoviridae/virología , Filogenia , Porcinos , Tailandia
5.
Arch Virol ; 164(2): 535-545, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30539262

RESUMEN

Human infection by low-pathogenic avian influenza viruses of the H7N9 subtype was first reported in March 2013 in China. Subsequently, these viruses caused five outbreaks through September 2017. In the fifth outbreak, H7N9 virus possessing a multiple basic amino acid insertion in the cleavage site of hemagglutinin emerged and caused 4% of all human infections in that period. To date, H7N9 highly pathogenic avian influenza viruses (HPAIVs) have been isolated from poultry, mostly chickens, as well as the environment. To evaluate the relative infectivity of these viruses in poultry, chickens and ducks were subjected to experimental infection with two H7N9 HPAIVs isolated from humans, namely A/Guangdong/17SF003/2016 and A/Taiwan/1/2017. When chickens were inoculated with the HPAIVs at a dose of 106 50% egg infectious dose (EID50), all chickens died within 2-5 days after inoculation, and the viruses replicated in most of the internal organs examined. The 50% lethal doses of A/Guangdong/17SF003/2016 and A/Taiwan/1/2017 in chickens were calculated as 103.3 and 104.7 EID50, respectively. Conversely, none of the ducks inoculated with either virus displayed any clinical signs, and less-efficient virus replication and less shedding were observed in ducks compared to chickens. These findings indicate that chickens, but not ducks, are highly permissive hosts for emerging H7N9 HPAIVs.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Enfermedades de las Aves de Corral/virología , Secuencia de Aminoácidos , Animales , Pollos , Patos , Humanos , Subtipo H7N9 del Virus de la Influenza A/clasificación , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Filogenia , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética , Virulencia
6.
Nature ; 501(7468): 551-5, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23842494

RESUMEN

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


Asunto(s)
Virus de la Influenza A , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Replicación Viral , Animales , Antivirales/farmacología , Células Cultivadas , Pollos/virología , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Perros , Inhibidores Enzimáticos/farmacología , Femenino , Hurones/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Virus de la Influenza A/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/patogenicidad , Gripe Humana/tratamiento farmacológico , Macaca fascicularis/virología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , Codorniz/virología , Porcinos/virología , Porcinos Enanos/virología , Replicación Viral/efectos de los fármacos
7.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795418

RESUMEN

Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. IMPORTANCE: This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1)pdm09 viruses became predominant, replacing those of the IAV-S that had been endemic in Vietnam since 2011. Notably, one of the novel reassortants likely caused a human case in Vietnam. Given that Vietnam is the second-largest pig-producing country in Asia, continued monitoring of IAV-S is highly important from the viewpoints of both the swine industry and human public health.


Asunto(s)
Genoma Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Filogenia , Enfermedades de los Porcinos/epidemiología , Animales , Teorema de Bayes , Monitoreo Epidemiológico , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/clasificación , Cadenas de Markov , Método de Montecarlo , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Vietnam/epidemiología
8.
Arch Virol ; 163(5): 1195-1207, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29392495

RESUMEN

From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.


Asunto(s)
Aves/virología , Genoma Viral , Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Pollos/virología , Patos/virología , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Japón/epidemiología , Filogenia , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Análisis de Secuencia de ADN
9.
BMC Vet Res ; 14(1): 115, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587842

RESUMEN

BACKGROUND: Experimental infection of pigs via direct intranasal or intratracheal inoculation has been mainly used to study the infectious process of influenza A viruses of swine (IAVs-S). Nebulization is known to be an alternative method for inoculating pigs with IAVs-S, because larger quantities of virus potentially can be delivered throughout the respiratory tract. However, there is very little data on the experimental infection of pigs by inhalation using nebulizer. In the current study, we used intranasal nebulization to inoculate pigs with 9 different IAVs-S-3 H1N1, 2 H1N2, and 4 H3N2 strains. We then assessed the process of infection by evaluating the clinical signs, nasal and oral viral shedding, and seroconversion rates of the pigs inoculated. RESULTS: Lethargy and sneezing were the predominant clinical signs among pigs inoculated with 7 of the 9 strains evaluated; the remaining 2 strains (1 H1N1 and 1 H1N2 isolate) failed to induce any clinical signs throughout the experiments. Significantly increased rectal temperatures were observed with an H1N1 or H3N2 strains between 1 and 3 days post-inoculation (dpi). In addition, patterns of nasal viral shedding differed among the strains: nasal viral shedding began on 1 dpi for 6 strains, with all 9 viruses being shed from 2 to 5 dpi. The detection of viral shedding was less sensitive from oral samples than nasal secretions. Viral shedding was not detected in either nasal or oral swabs after 10 dpi. According to hemagglutination-inhibition assays, all inoculated pigs had seroconverted to the inoculating virus by 14 dpi, with titers ranging from 10 to 320. CONCLUSIONS: Our current findings show that intranasal nebulization successfully established IAV-S infections in pigs and demonstrate that clinical signs, viral shedding, and host immune responses varied among the strains inoculated.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H1N2 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Administración Intranasal/métodos , Administración Intranasal/veterinaria , Animales , Nebulizadores y Vaporizadores/veterinaria , Infecciones por Orthomyxoviridae/etiología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/etiología , Enfermedades de los Porcinos/patología , Esparcimiento de Virus
10.
Emerg Infect Dis ; 23(4): 691-695, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28322695

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Aves , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Japón , Filogenia
11.
J Gen Virol ; 98(9): 2235-2247, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28825532

RESUMEN

Previous research revealed the induction of chicken USP18 (chUSP18) in the lungs of chickens infected with highly pathogenic avian influenza viruses (HPAIVs). This activity was correlated with the degree of pathogenicity of the viruses to chickens. As mammalian ubiquitin-specific protease (USP18) is known to remove type I interferon (IFN I)-inducible ubiquitin-like molecules from conjugated proteins and block IFN I signalling, we explored the function of the chicken homologue of USP18 during avian influenza virus infection. With this aim, we cloned chUSP18 from cultured chicken cells and revealed that the putative chUSP18 ORF comprises 1137 bp. Comparative analysis of the predicted aa sequence of chUSP18 with those of human and mouse USP18 revealed relatively high sequence similarity among the sequences, including domains specific for the ubiquitin-specific processing protease family. Furthermore, we found that chUSP18 expression was induced by chicken IFN I, as observed for mammalian USP18. Experiments based on chUSP18 over-expression and depletion demonstrated that chUSP18 significantly enhanced the replication of a low-pathogenic avian influenza virus (LPAIV), but not an HPAIV. Our findings suggest that chUSP18, being similar to mammalian USP18, acts as a pro-viral factor during LPAIV replication in vitro.


Asunto(s)
Proteínas Aviares/metabolismo , Virus de la Influenza A/fisiología , Gripe Aviar/enzimología , Enfermedades de las Aves de Corral/enzimología , Proteasas Ubiquitina-Específicas/metabolismo , Replicación Viral , Animales , Proteínas Aviares/genética , Pollos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/genética , Gripe Aviar/virología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Proteasas Ubiquitina-Específicas/genética , Virulencia
12.
Microb Cell Fact ; 16(1): 108, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619018

RESUMEN

BACKGROUND: The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. RESULTS: Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. CONCLUSIONS: Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.


Asunto(s)
Citoplasma/química , Disulfuros/química , Escherichia coli/genética , Animales , Avidina/análisis , Avidina/biosíntesis , Avidina/genética , Reactores Biológicos , Pollos , Medios de Cultivo/química , Citoplasma/metabolismo , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Femenino , Fermentación , Glucosa/metabolismo , Glicerol/metabolismo , Hormona de Crecimiento Humana/biosíntesis , Hormona de Crecimiento Humana/genética , Humanos , Fragmentos de Inmunoglobulinas/biosíntesis , Fragmentos de Inmunoglobulinas/genética , Cuerpos de Inclusión/química , Cuerpos de Inclusión/metabolismo , Interleucina-6/biosíntesis , Interleucina-6/genética , Oxidación-Reducción , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química
13.
Arch Virol ; 162(1): 103-116, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27686072

RESUMEN

H7N9 human influenza virus A/Anhui/1/2013 (Anhui2013) showed low pathogenicity in chickens, quail, and pigeons, with quail being the most susceptible among the species tested. IVPIE1-1, which was recovered from a dead chicken after intravenous inoculation of Anhui 2013, had broader tissue tropism in chickens than did the original inoculum, as well as amino acid substitutions in the polymerase acidic gene and neuraminidase gene segments, but its pathogenicity was not enhanced. Viruses obtained after passage of Anhui 2013 in 10- and 14-day-old embryonated eggs showed rapid accumulation of amino acid substitutions at the receptor-binding site of the hemagglutinin protein. Two strains obtained through egg passage, 10E4/14E17 and 10E4/10E13, replicated better in intranasally infected chickens than did the original Anhui 2013 strain, yet the new isolates showed low pathogenicity in chickens despite their amino acid substitutions. The increased virus replication in chickens of 10E4/14E17 and 10E4/10E13 was not correlated with temperature-sensitive replication, given that virus replication was suppressed at increased temperatures. The existence of highly susceptible hosts, such as quail, which permit asymptomatic infection, facilitates increased mutation of the virus through amino acid substitution at the receptor-binding site, and this might be one of the mechanisms underlying the prolonged circulation of H7N9 influenza virus.


Asunto(s)
Adaptación Biológica , Pollos/virología , Columbidae/virología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Codorniz/virología , Tropismo Viral , Animales , Especificidad del Huésped , Humanos , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Gripe Aviar/virología
14.
Microb Cell Fact ; 15: 22, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26809624

RESUMEN

BACKGROUND: Disulfide bonds are the most common structural, post-translational modification found in proteins. Antibodies contain up to 25 disulfide bonds depending on type, with scFv fragments containing two disulfides and Fab fragments containing five or six disulfide bonds. The production of antibody fragments that contain native disulfide bonds can be challenging, especially on a large scale. The protein needs to be targeted to prokaryotic periplasm or the eukaryotic endoplasmic reticulum. These compartments are specialised for disulfide bond formation, but both compartments have limitations. RESULTS: Here we show that the introduction into the cytoplasm of a catalyst of disulfide bond formation and a catalyst of disulfide bond isomerization allows the efficient formation of natively folded scFv and Fab antibody fragments in the cytoplasm of Escherichia coli with intact reducing pathways. Eleven scFv and eleven Fab fragments were screened and ten of each were obtained in yields of >5 mg/L from deep-well plates. Production of eight of the scFv and all ten of the Fab showed a strong dependence on the addition of the folding factors. Yields of purified scFv of up to 240 mg/L and yields of purified Fab fragments of up to 42 mg/L were obtained. Purified fragments showed circular dichroism spectra consistent with being natively folded and were biologically active. CONCLUSIONS: Our results show that the efficient production of soluble, biologically active scFv and Fab antibody fragments in the cytoplasm of E. coli is not only possible, but facile. The required components can be easily transferred between different E. coli strains.


Asunto(s)
Citoplasma/metabolismo , Escherichia coli/metabolismo , Fragmentos de Inmunoglobulinas/metabolismo , Ingeniería de Proteínas/métodos , Animales , Anticuerpos/aislamiento & purificación , Vectores Genéticos/metabolismo , Humanos , Fragmentos de Inmunoglobulinas/aislamiento & purificación , Ratones , Peso Molecular , Plásmidos/metabolismo , Anticuerpos de Cadena Única/metabolismo , Solubilidad , Espectrometría de Masa por Ionización de Electrospray
15.
Microbiol Immunol ; 60(4): 243-52, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26916882

RESUMEN

Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub-groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub-group; whereas wild bird isolates belonged to the other sub-groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub-groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub-group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub-group C) and A/duck/Chiba/26-372-48/2014 (Chiba2014; sub-group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates.


Asunto(s)
Aves/virología , Pollos/virología , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Anticuerpos Antivirales/inmunología , Embrión de Pollo , Brotes de Enfermedades/veterinaria , Patos/virología , Hemaglutininas/genética , Hemaglutininas/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Japón/epidemiología , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Replicación Viral
16.
Rev Med Virol ; 25(6): 388-405, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26458727

RESUMEN

Asian H5 highly pathogenic avian influenza viruses (HPAIVs) that possess the clade 2.3.4.4 HA gene have been identified in wild birds and poultry since late 2014 in both Europe and North America (N. America). Clade 2.3.4.4 H5 HPAIVs of the H5N8 subtype have been isolated in both regions, whereas reassortment viruses with NA N1 and N2 subtypes of the North American (N. American). avian lineage have only been identified in N. America. The HA genes of those isolates were closely related to genes of the HPAIVs that have caused massive outbreaks in poultry in Korea since January 2014. The outbreaks caused by those viruses and the genetic relatedness of their HA and NA genes are reviewed in this study. Although the illegal movement of poultry and poultry products cannot be ruled out as a cause of intercontinental and intracontinental dissemination of clade 2.3.4.4 H5 HPAIVs during the winter of 2014-2015, transmission of the viruses by infected migratory birds appears to be a more plausible mechanism for their dissemination. In particular, the involvement of migratory birds in HPAIV transmission between Asia and N. America is highly likely because of the reassortments between H5N8 HPAIV and the N. American lineage avian influenza viruses.


Asunto(s)
Genotipo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Aves , Salud Global , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Epidemiología Molecular , Aves de Corral , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación
17.
BMC Vet Res ; 12(1): 227, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27724934

RESUMEN

BACKGROUND: Influenza A viruses of swine (IAV-S) cause acute and subclinical respiratory disease. To increase our understanding of the etiology of the subclinical form and thus help prevent the persistence of IAV-S in pig populations, we conducted active virologic surveillance in Vietnam, the second-largest pig-producing country in Asia, from February 2010 to December 2013. RESULTS: From a total of 7034 nasal swabs collected from clinically healthy pigs at 250 farms and 10 slaughterhouses, we isolated 172 IAV-S from swine at the weaning and early-fattening stages. The isolation rate of IAV-S was significantly higher among pigs aged 3 weeks to 4.5 months than in older and younger animals. IAV-S were isolated from 16 large, corporate farms and 6 family-operated farms from among the 250 farms evaluated. Multivariate logistic regression analysis revealed that "having more than 1,000 pigs" was the most influential risk factor for IAV-S positivity. Farms affected by reassortant IAV-S had significantly larger pig populations than did those where A(H1N1)pdm09 viruses were isolated, thus suggesting that large, corporate farms serve as sites of reassortment events. CONCLUSIONS: We demonstrate the asymptomatic circulation of IAV-S in the Vietnamese pig population. Raising a large number of pigs on a farm has the strongest impact on the incidence of subclinical IAV-S infection. Given that only some of the corporate farms surveyed were IAV-S positive, further active monitoring is necessary to identify additional risk factors important in subclinical infection of pigs with IAV-S in Vietnam.


Asunto(s)
Virus de la Influenza A/clasificación , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Crianza de Animales Domésticos , Animales , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/epidemiología , Vietnam/epidemiología
18.
J Virol ; 88(19): 11130-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25031333

RESUMEN

UNLABELLED: Amino acid substitutions were introduced into avian influenza virus PB1 in order to characterize the interaction between polymerase activity and pathogenicity. Previously, we used recombinant viruses containing the hemagglutinin (HA) and neuraminidase (NA) genes from the highly pathogenic avian influenza virus (HPAIV) H5N1 strain and other internal genes from two low-pathogenicity avian influenza viruses isolated from chicken and wild-bird hosts (LP and WB, respectively) to demonstrate that the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 in chickens is regulated by the PB1 gene (Y. Uchida et al., J. Virol. 86:2686-2695, 2012, doi:http://dx.doi.org/10.1128/JVI.06374-11). In the present study, we introduced a C38Y substitution into WB PB1 and demonstrated that this substitution increased both polymerase activity in DF-1 cells in vitro and the pathogenicity of the recombinant viruses in chickens. The V14A substitution in LP PB1 reduced polymerase activity but did not affect pathogenicity in chickens. Interestingly, the V14A substitution reduced viral shedding and transmissibility. These studies demonstrate that increased polymerase activity correlates directly with enhanced pathogenicity, while decreased polymerase activity does not always correlate with pathogenicity and requires further analysis. IMPORTANCE: We identified 2 novel amino acid substitutions in the avian influenza virus PB1 gene that affect the characteristics of highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype, such as viral replication and polymerase activity in vitro and pathogenicity and transmissibly in chickens. An amino acid substitution at residue 38 in PB1 directly affected pathogenicity in chickens and was associated with changes in polymerase activity in vitro. A substitution at residue 14 reduced polymerase activity in vitro, while its effects on pathogenicity and transmissibility depended on the constellation of internal genes.


Asunto(s)
Sustitución de Aminoácidos , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Virus Reordenados/patogenicidad , Proteínas Virales/genética , Animales , Pollos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/mortalidad , Gripe Aviar/virología , Virus Reordenados/genética , Análisis de Supervivencia , Carga Viral , Virulencia , Replicación Viral , Esparcimiento de Virus
19.
Arch Virol ; 160(7): 1629-43, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25902725

RESUMEN

A highly pathogenic avian influenza virus (HPAIV) of subtype H5N8, A/chicken/Kumamoto/1-7/2014, was isolated from a Japanese chicken farm during an outbreak in April 2014. Phylogenetic analysis revealed that this virus belonged to HA clade 2.3.4.4. All eight genomic segments showed high sequence similarity to those of the H5N8 subtype HPAIVs A/broiler duck/Korea/Buan2/2014 and A/baikal teal/Korea/Donglim3/2014, which were isolated in Korea in January 2014. Intranasal experimental infection of chickens and ducks with A/chicken/Kumamoto/1-7/2014 was performed to assess the pathogenicity of the virus in chickens and the potential for waterfowl to act as a virus reservoir and carrier. A high-titer virus challenge (10(6) EID50 per animal) was lethal in chickens, but they were unaffected by lower virus doses (10(2) EID50 or 10(4) EID50 per animal). Virus challenge at all doses examined was found to result in asymptomatic infection of ducks. An HI assay revealed that A/chicken/Kumamoto/1-7/2014 possessed relatively low cross-reactivity with H5 viruses belonging to clades other than clade 2.3.4.4. These results suggest that waterfowl may be able to spread the virus even if they possess antibodies resulting from a previous infection with H5 HPAIV that was antigenically distinguishable from viruses belonging to clade 2.3.4.4.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Animales , Anticuerpos Antivirales/inmunología , Embrión de Pollo , Pollos , Brotes de Enfermedades , Patos , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Gripe Aviar/epidemiología , Gripe Aviar/inmunología , Japón , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/inmunología
20.
Microbiol Immunol ; 58(6): 327-41, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24750464

RESUMEN

In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/aislamiento & purificación , Recombinación Genética , Enfermedades de los Porcinos/virología , Animales , Anticuerpos Antivirales/inmunología , Análisis por Conglomerados , Humanos , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Japón , Datos de Secuencia Molecular , Orthomyxoviridae , Infecciones por Orthomyxoviridae/virología , Filogenia , ARN Viral/genética , Virus Reordenados/genética , Análisis de Secuencia de ADN , Porcinos , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA