Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Dev Dyn ; 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038963

RESUMEN

BACKGROUND: The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra-embryonic ASCs (hereafter referred to as iASCs) remain largely unknown. RESULTS: By quail-chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra-thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single-cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast-like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression. CONCLUSION: The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.

2.
Dev Biol ; 402(2): 162-74, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25889273

RESUMEN

Most gnathostomata craniofacial structures derive from pharyngeal arches (PAs), which are colonized by cranial neural crest cells (CNCCs). The anteroposterior and dorsoventral identities of CNCCs are defined by the combinatorial expression of Hox and Dlx genes. The mechanisms associating characteristic Hox/Dlx expression patterns with the topology and morphology of PAs derivatives are only partially known; a better knowledge of these processes might lead to new concepts on the origin of taxon-specific craniofacial morphologies and of certain craniofacial malformations. Here we show that ectopic expression of Hoxa2 in Hox-negative CNCCs results in distinct phenotypes in different CNCC subpopulations. Namely, while ectopic Hoxa2 expression is sufficient for the morphological and molecular transformation of the first PA (PA1) CNCC derivatives into the second PA (PA2)-like structures, this same genetic alteration does not provoke the transformation of derivatives of other CNCC subpopulations, but severely impairs their development. Ectopic Hoxa2 expression results in the transformation of the proximal Meckel's cartilage and of the malleus, two ventral PA1 CNCCs derivatives, into a supernumerary styloid process (SP), a PA2-derived mammalian-specific skeletal structure. These results, together with experiments to inactivate and ectopically activate the Edn1-Dlx5/6 pathway, indicate a dorsoventral PA2 (hyomandibular/ceratohyal) boundary passing through the middle of the SP. The present findings suggest context-dependent function of Hoxa2 in CNCC regional specification and morphogenesis, and provide novel insights into the evolution of taxa-specific patterning of PA-derived structures.


Asunto(s)
Región Branquial/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Morfogénesis/fisiología , Cresta Neural/metabolismo , Azul Alcián , Animales , Antraquinonas , Región Branquial/metabolismo , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Ratones , Ratones Mutantes , Morfogénesis/genética , Cresta Neural/embriología , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Development ; 138(21): 4763-76, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21965612

RESUMEN

Angiogenesis is a complex process, which is accomplished by reiteration of modules such as sprouting, elongation and bifurcation, that configures branching vascular networks. However, details of the individual and collective behaviors of vascular endothelial cells (ECs) during angiogenic morphogenesis remain largely unknown. Herein, we established a time-lapse imaging and computer-assisted analysis system that quantitatively characterizes behaviors in sprouting angiogenesis. Surprisingly, ECs moved backwards and forwards, overtaking each other even at the tip, showing an unknown mode of collective cell movement with dynamic 'cell-mixing'. Mosaic analysis, which enabled us to monitor the behavior of individual cells in a multicellular structure, confirmed the 'cell-mixing' phenomenon of ECs that occurs at the whole-cell level. Furthermore, an in vivo EC-tracking analysis revealed evidence of cell-mixing and overtaking at the tip in developing murine retinal vessels. In parametrical analysis, VEGF enhanced tip cell behavior and directed EC migration at the stalk during branch elongation. These movements were counter-regulated by EC-EC interplay via γ-secretase-dependent Dll4-Notch signaling, and might be promoted by EC-mural cell interplay. Finally, multiple regression analysis showed that these molecule-mediated tip cell behaviors and directed EC migration contributed to effective branch elongation. Taken together, our findings provide new insights into the individual and collective EC movements driving angiogenic morphogenesis. The methodology used for this analysis might serve to bridge the gap in our understanding between individual cell behavior and branching morphogenesis.


Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/fisiología , Morfogénesis/fisiología , Neovascularización Fisiológica/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Aorta/citología , Proteínas de Unión al Calcio , Proliferación Celular , Células Cultivadas , Células Endoteliales/citología , Procesamiento de Imagen Asistido por Computador , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Receptores Notch/genética , Receptores Notch/metabolismo , Vasos Retinianos/citología , Vasos Retinianos/fisiología , Transducción de Señal/fisiología , Imagen de Lapso de Tiempo
4.
J Cell Sci ; 124(Pt 8): 1214-23, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21406564

RESUMEN

Crosstalk between microtubules and actin filaments is crucial for various cellular functions, including cell migration, spreading and cytokinesis. The Rac1 GTPase plays a key role in such crosstalk at the leading edge of migrating cells in order to promote lamellipodial formation. However, the mechanism underlying the link between microtubules and Rac1 activation remains unclear. Here, we show that calpain-6 (CAPN6), a non-proteolytic calpain with microtubule-binding and -stabilizing activity, might participate in this crosstalk. Small interfering RNA (siRNA)-induced knockdown of Capn6 in NIH 3T3 cells resulted in Rac1 activation, which promoted cell migration, spreading and lamellipodial protrusion. This increase in Rac1 activity was abolished by knockdown of the Rho guanine nucleotide exchange factor GEF-H1 (officially known as Arhgef2). CAPN6 and GEF-H1 colocalized with microtubules and also interacted with each other through specific domains. Upon knockdown of Capn6, GEF-H1 was shown to translocate from microtubules to the lamellipodial region and to interact with Rac1. By contrast, RhoA activity was decreased upon knockdown of Capn6, although low levels of active RhoA or the presence of RhoA molecules appeared to be required for the Capn6-knockdown-induced Rac1 activation. We suggest that CAPN6 acts as a potential regulator of Rac1 activity, through a mechanism involving interaction with GEF-H1, to control lamellipodial formation and cell motility.


Asunto(s)
Calpaína/metabolismo , Movimiento Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Calpaína/genética , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Células 3T3 NIH , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Seudópodos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Proteína de Unión al GTP rac1/genética
5.
Development ; 137(22): 3823-33, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20929948

RESUMEN

The avian and mammalian heart originates from two distinct embryonic regions: an early differentiating first heart field and a dorsomedially located second heart field. It remains largely unknown when and how these subdivisions of the heart field divide into regions with different fates. Here, we identify in the mouse a subpopulation of the first (crescent-forming) field marked by endothelin receptor type A (Ednra) gene expression, which contributes to chamber myocardium through a unique type of cell behavior. Ednra-lacZ/EGFP-expressing cells arise in the ventrocaudal inflow region of the early linear heart tube, converge to the midline, move anteriorly along the outer curvature and give rise to chamber myocardium mainly of the left ventricle and both atria. This movement was confirmed by fluorescent dye-labeling and transplantation experiments. The Ednra-lacZ/EGFP-expressing subpopulation is characterized by the presence of Tbx5-expressing cells. Ednra-null embryonic hearts often demonstrate hypoplasia of the ventricular wall, low mitotic activity and decreased Tbx5 expression with reciprocal expansion of Tbx2 expression. Conversely, endothelin 1 stimulates ERK phosphorylation and Tbx5 expression in the early embryonic heart. These results indicate that early Ednra expression defines a subdomain of the first heart field contributing to chamber formation, in which endothelin 1/Ednra signaling is involved. The present finding provides an insight into how subpopulations within the crescent-forming (first) heart field contribute to the coordination of heart morphogenesis through spatiotemporally defined cell movements.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Miocardio/metabolismo , Organogénesis , Receptor de Endotelina A/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Endotelinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas de Sustitución del Gen , Ventrículos Cardíacos/embriología , Ratones , Mitosis , Fosforilación , Receptor de Endotelina A/genética , Proteínas de Dominio T Box/metabolismo
6.
Sci Rep ; 13(1): 20549, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996513

RESUMEN

We introduce a three-dimensional mathematical model for the dynamics of vascular endothelial cells during sprouting angiogenesis. Angiogenesis is the biological process by which new blood vessels form from existing ones. It has been the subject of numerous theoretical models. These models have successfully replicated various aspects of angiogenesis. Recent studies using particle-based models have highlighted the significant influence of cell shape on network formation, with elongated cells contributing to the formation of branching structures. While most mathematical models are two-dimensional, we aim to investigate whether ellipsoids also form branch-like structures and how their shape affects the pattern. In our model, the shape of a vascular endothelial cell is represented as a spheroid, and a discrete dynamical system is constructed based on the simple assumption of two-body interactions. Numerical simulations demonstrate that our model reproduces the patterns of elongation and branching observed in the early stages of angiogenesis. We show that the pattern formation of the cell population is strongly dependent on the cell shape. Finally, we demonstrate that our current mathematical model reproduces the cell behaviours, specifically cell-mixing, observed in sprouts.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Morfogénesis , Modelos Teóricos , Fenómenos Fisiológicos Cardiovasculares
7.
Nat Commun ; 14(1): 5398, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669937

RESUMEN

Hematopoietic progenitors are enriched in the endocardial cushion and contribute, in a Nkx2-5-dependent manner, to tissue macrophages required for the remodeling of cardiac valves and septa. However, little is known about the molecular mechanism of endocardial-hematopoietic transition. In the current study, we identified the regulatory network of endocardial hematopoiesis. Signal network analysis from scRNA-seq datasets revealed that genes in Notch and retinoic acid (RA) signaling are significantly downregulated in Nkx2-5-null endocardial cells. In vivo and ex vivo analyses validate that the Nkx2-5-Notch axis is essential for the generation of both hemogenic and cushion endocardial cells, and the suppression of RA signaling via Dhrs3 expression plays important roles in further differentiation into macrophages. Genetic ablation study revealed that these macrophages are essential in cardiac valve remodeling. In summary, the study demonstrates that the Nkx2-5/Notch/RA signaling plays a pivotal role in macrophage differentiation from hematopoietic progenitors.


Asunto(s)
Endocardio , Macrófagos , Histiocitos , Diferenciación Celular , Tretinoina
8.
iScience ; 26(7): 107051, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37426350

RESUMEN

Angiogenesis is a sequential process to extend new blood vessels from preexisting ones by sprouting and branching. During angiogenesis, endothelial cells (ECs) exhibit inhomogeneous multicellular behaviors referred to as "cell mixing," in which ECs repetitively exchange their relative positions, but the underlying mechanism remains elusive. Here we identified the coordinated linear and rotational movements potentiated by cell-cell contact as drivers of sprouting angiogenesis using in vitro and in silico approaches. VE-cadherin confers the coordinated linear motility that facilitated forward sprout elongation, although it is dispensable for rotational movement, which was synchronous without VE-cadherin. Mathematical modeling recapitulated the EC motility in the two-cell state and angiogenic morphogenesis with the effects of VE-cadherin-knockout. Finally, we found that VE-cadherin-dependent EC compartmentalization potentiated branch elongations, and confirmed this by mathematical simulation. Collectively, we propose a way to understand angiogenesis, based on unique EC behavioral properties that are partially dependent on VE-cadherin function.

9.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36637912

RESUMEN

Mutations of G protein-coupled receptors (GPCRs) cause various human diseases, but the mechanistic details are limited. Here, we establish p.E303K in the gene encoding the endothelin receptor type A (ETAR/EDNRA) as a recurrent mutation causing mandibulofacial dysostosis with alopecia (MFDA), with craniofacial changes similar to those caused by p.Y129F. Mouse models carrying either of these missense mutations exhibited a partial maxillary-to-mandibular transformation, which was rescued by deleting the ligand endothelin 3 (ET3/EDN3). Pharmacological experiments confirmed the causative ETAR mutations as gain of function, dependent on ET3. To elucidate how an amino acid substitution far from the ligand binding site can increase ligand affinity, we used molecular dynamics (MD) simulations. E303 is located at the intracellular end of transmembrane domain 6, and its replacement by a lysine increased flexibility of this portion of the helix, thus favoring G protein binding and leading to G protein-mediated enhancement of agonist affinity. The Y129F mutation located under the ligand binding pocket reduced the sodium-water network, thereby affecting the extracellular portion of helices in favor of ET3 binding. These findings provide insight into the pathogenesis of MFDA and into allosteric mechanisms regulating GPCR function, which may provide the basis for drug design targeting GPCRs.


Asunto(s)
Disostosis Mandibulofacial , Animales , Ratones , Humanos , Disostosis Mandibulofacial/genética , Mutación con Ganancia de Función , Ligandos , Sitios de Unión , Mutación , Receptores Acoplados a Proteínas G/genética , Unión Proteica , Alopecia/genética , Sitio Alostérico
10.
Proc Natl Acad Sci U S A ; 105(48): 18806-11, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19017795

RESUMEN

Articulated jaws are highly conserved structures characteristic of gnathostome evolution. Epithelial-mesenchymal interactions within the first pharyngeal arch (PA1) instruct cephalic neural crest cells (CNCCs) to form the different skeletal elements of the jaws. The endothelin-1 (Edn1)/endothelin receptor type-A (Ednra)-->Dlx5/6-->Hand2 signaling pathway is necessary for lower jaw formation. Here, we show that the Edn1 signaling is sufficient for the conversion of the maxillary arch to mandibular identity. Constitutive activation of Ednra induced the transformation of upper jaw, maxillary, structures into lower jaw, mandibular, structures with duplicated Meckel's cartilage and dermatocranial jaws constituted by 4 dentary bones. Misexpression of Hand2 in the Ednra domain caused a similar transformation. Skeletal transformations are accompanied by neuromuscular remodeling. Ednra is expressed by most CNCCs, but its constitutive activation affects predominantly PA1. We conclude that after migration CNCCs are not all equivalent, suggesting that their specification occurs in sequential steps. Also, we show that, within PA1, CNCCs are competent to form both mandibular and maxillary structures and that an Edn1 switch is responsible for the choice of either morphogenetic program.


Asunto(s)
Endotelina-1/metabolismo , Mandíbula/embriología , Maxilar/embriología , Receptor de Endotelina A/metabolismo , Transducción de Señal/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Endotelina-1/genética , Regulación del Desarrollo de la Expresión Génica , Mandíbula/anatomía & histología , Mandíbula/metabolismo , Maxilar/anatomía & histología , Maxilar/metabolismo , Ratones , Ratones Transgénicos , Receptor de Endotelina A/genética
11.
iScience ; 24(4): 102305, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33870127

RESUMEN

Blood and lymphatic vessels surrounding the heart develop through orchestrated processes from cells of different origins. In particular, cells around the outflow tract which constitute a primordial transient vasculature, referred to as aortic subepicardial vessels, are crucial for the establishment of coronary artery stems and cardiac lymphatic vessels. Here, we revealed that the epicardium and pericardium-derived Semaphorin 3E (Sema3E) and its receptor, PlexinD1, play a role in the development of the coronary stem, as well as cardiac lymphatic vessels. In vitro analyses demonstrated that Sema3E may demarcate areas to repel PlexinD1-expressing lymphatic endothelial cells, resulting in proper coronary and lymphatic vessel formation. Furthermore, inactivation of Sema3E-PlexinD1 signaling improved the recovery of cardiac function by increasing reactive lymphangiogenesis in an adult mouse model of myocardial infarction. These findings may lead to therapeutic strategies that target Sema3E-PlexinD1 signaling in coronary artery diseases.

12.
Mol Cell Biol ; 27(7): 2548-61, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17210638

RESUMEN

The calpains are a family of Ca(2+)-dependent cysteine proteases implicated in various biological processes. In this family, calpain 6 (Capn6) is unique in that it lacks the active-site cysteine residues requisite for protease activity. During the search for genes downstream of the endothelin 1 (ET-1) signaling in pharyngeal-arch development, we identified Capn6. After confirming that the expression of Capn6 in pharyngeal arches is downregulated in ET-1-null embryos by in situ hybridization, we investigated its function. In Capn6-transfected cells, cytokinesis was retarded and was often aborted to yield multinucleated cells. Capn6 overexpression also caused the formation of microtubule bundles rich in acetylated alpha-tubulin and resistant to the depolymerizing activity of nocodazole. Green fluorescent protein-Capn6 overexpression, immunostaining for endogenous Capn6, and biochemical analysis demonstrated interaction between Capn6 and microtubules, which appeared to be mainly mediated by domain III. Furthermore, RNA interference-mediated Capn6 inactivation caused microtubule instability with a loss of acetylated alpha-tubulin and induced actin reorganization, resulting in lamellipodium formation with membrane ruffling. Taken together, these results indicate that Capn6 is a microtubule-stabilizing protein expressed in embryonic tissues that may be involved in the regulation of microtubule dynamics and cytoskeletal organization.


Asunto(s)
Calpaína/fisiología , Citoesqueleto/fisiología , Endotelina-1/metabolismo , Acetilación , Animales , Calpaína/genética , Células Cultivadas , Citocinesis , Citoesqueleto/ultraestructura , Embrión de Mamíferos/citología , Endotelina-1/genética , Humanos , Mandíbula/citología , Ratones , Ratones Noqueados , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos , Seudópodos/fisiología , Interferencia de ARN , Transducción de Señal
13.
Dev Biol ; 313(1): 335-46, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18048024

RESUMEN

DNA methylation at cytosine residues in CpG dinucleotides is a component of epigenetic marks crucial to mammalian development. In preimplantation stage embryos, a large part of genomic DNA is extensively demethylated, whereas the methylation patterns are faithfully maintained in certain regions. To date, no enzymes responsible for the maintenance of DNA methylation during preimplantation development have been identified except for the oocyte form of DNA (cytosine-5)-methyltransferase 1 (Dnmt1o) at the 8-cell stage. Herein, we demonstrate that the somatic form of Dnmt1 (Dnmt1s) is present in association with chromatin in MII-stage oocytes as well as in the nucleus throughout preimplantation development. At the early one-cell stage, Dnmt1s is asymmetrically localized in the maternal pronuclei. Thereafter, Dnmt1s is recruited to the paternal genome during pronuclear maturation. During the first two cell cycles after fertilization, Dnmt1s is exported from the nucleus in the G2 phase in a CRM1/exportin-dependent manner. Antibody microinjection and small interfering RNA-mediated knock-down decreases methylated CpG dinucleotides in repetitive intracisternal A-type particle (IAP) sequences and the imprinted gene H19. These results indicate that Dnmt1s is responsible for the maintenance methylation of particular genomic regions whose methylation patterns must be faithfully maintained during preimplantation development.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Embrión de Mamíferos/metabolismo , Animales , Núcleo Celular/química , Núcleo Celular/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/análisis , ADN (Citosina-5-)-Metiltransferasas/genética , Embrión de Mamíferos/enzimología , Femenino , Isoenzimas/análisis , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Oocitos/enzimología , ARN Interferente Pequeño
14.
Endocrinology ; 147(11): 5374-84, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16916956

RESUMEN

Chronic excess of GH is known to cause hyperinsulinemia and insulin resistance. We developed human GH transgenic (TG) rats, which were characterized by high plasma levels of human GH and IGF-I. These TG rats showed higher levels of plasma insulin, compared with control littermates, whereas plasma glucose concentrations were normal. Insulin-dependent glucose uptake into adipocytes and muscle was impaired, suggesting that these rats developed insulin resistance. In contrast, insulin-independent glucose uptake into hepatocytes from TG rats was significantly increased, and glycogen and lipid levels in livers of TG rats were remarkably high. Because the role of liver in GH-induced insulin resistance is poorly understood, we studied insulin signaling at early stages and insulin action in liver and primary cultures of hepatocytes prepared from TG rats. There was no difference in insulin receptor kinase activity induced by insulin between TG and control rats; however, insulin-dependent insulin receptor substrate-2 tyrosine phosphorylation, glycogen synthase activation, and expression of enzymes that induce lipid synthesis were potentiated in hepatocytes of TG rats. These results suggest that impairment of insulin-dependent glucose uptake by GH excess in adipose tissue and muscle is compensated by up-regulation of glucose uptake in liver and that potentiation of insulin signaling through insulin receptor substrate-2 in liver experiencing GH excess causes an increase in glycogen and lipid synthesis from incorporated glucose, resulting in accumulation of glycogen and lipids in liver. This novel mechanism explains normalization of plasma glucose levels at least in part in a GH excess model.


Asunto(s)
Glucosa/metabolismo , Hormona de Crecimiento Humana/fisiología , Resistencia a la Insulina , Hígado/fisiología , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Hepatocitos/metabolismo , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Masculino , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Fosfoproteínas/metabolismo , ARN Mensajero/análisis , Ratas , Receptor de Insulina/metabolismo , Tirosina/metabolismo
15.
Diabetes Res Clin Pract ; 73(2): 135-42, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16503364

RESUMEN

To elucidate the role of AMPK in hepatic glucose metabolism, dominant negative (DN), constitutively active (CA) forms of the AMPKalpha1 subunit and control vector LacZ were overexpressed by means of adenovirus-mediated gene transfer. Five days after virus injection, hepatic AMPK activity was five-fold higher in CA mice than in DN mice. DN mice were apparently glucose intolerant with a higher fasting plasma glucose level (DN 82.3+/-0.7mg/dl, CA 42.5+/-4.8mg/dl and LacZ 54.3+/-2.4mg/dl). PEPCK, a gluconeogenic key enzyme, mRNA was increased 131.54% and 48.92% in DN mice compared to that of CA and LacZ, respectively. Thus, hepatic AMPK activation plays a role in the suppression of gluconeogenesis and this might be the cause of decreased fasting plasma glucose level in CA mice. We also investigated the effects of dexamethasone on hepatic AMPK expression and activity in rat liver, mice liver, as well as primary cultured hepatocytes. Subcutaneously injecting mice with dexamethasone (1mg/day) for 5 days significantly upregulated hepatic AMPKalpha1 and alpha2 expressions. Similarly, the treatment of primary cultured rat hepatocytes with dexamethasone (1microM) increased expression of the AMPKalpha1 subunit, AICAR-induced AMPK phosphorylation and kinase activity. Although increased AMPK expression cannot be attributed to dexamethasone-induced glucose intolerance, taken together our results raise the possibility that AMPK control liver glucose output and its expression in liver might be modulated by various hormones and growth factors.


Asunto(s)
Gluconeogénesis , Glucosa/metabolismo , Hígado/enzimología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Adenoviridae , Animales , Glucemia/análisis , Dexametasona/farmacología , Activación Enzimática , Vectores Genéticos , Glucocorticoides/farmacología , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Intolerancia a la Glucosa/inducido químicamente , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hígado/citología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/genética , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Sprague-Dawley
16.
Curr Med Chem ; 11(20): 2717-24, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15544472

RESUMEN

Glucose transporters, or membrane proteins, which incorporate glucose into the cell, can be divided into two groups: the facilitative type glucose transporter (GLUT), and the sodium/glucose cotransporter (SGLT). Among the GLUT family isoforms, GLUT4 is particularly important for maintaining glucose metabolism homeostasis since it is involved in insulin or exercise-induced glucose transport into muscle and adipose tissues via movement from intracellular sites to the plasma membrane in response to stimulation. Thus, agents which induce GLUT4 translocation or improve insulin sensitivity, involved in this insulin-induced step, hold the promise of being potent anti-diabetic drugs. On the other hand, SGLT is expressed specifically in the intestines and kidneys. Oral administration of a SGLT inhibitor, T-1095, lowers the blood glucose concentration via excretion of glucose in the urine, due to suppression of renal SGLT function. In addition to this direct blood glucose lowering effect, T-1095 has been shown to restore impaired insulin secretion from pancreatic beta-cells, as well as to improve insulin resistance in muscle and liver. Thus, this SGLT inhibitor is regarded as a novel and promising agent for the treatment of diabetes mellitus.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Glucosa/metabolismo , Hipoglucemiantes/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Sodio/metabolismo , Animales , Humanos , Hipoglucemiantes/farmacología , Glicoproteínas de Membrana/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Transportador 1 de Sodio-Glucosa
17.
Mech Dev ; 130(11-12): 553-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23933587

RESUMEN

Endothelin-1 (Edn1), originally identified as a vasoconstrictor peptide, is involved in the development of cranial/cardiac neural crest-derived tissues and organs. In craniofacial development, Edn1 binds to Endothelin type-A receptor (Ednra) to induce homeobox genes Dlx5/Dlx6 and determines the mandibular identity in the first pharyngeal arch. However, it remains unsolved whether this pathway is also critical for pharyngeal arch artery development to form thoracic arteries. Here, we show that the Edn1/Ednra signaling is involved in pharyngeal artery development by controlling the fate of neural crest cells through a Dlx5/Dlx6-independent mechanism. Edn1 and Ednra knock-out mice demonstrate abnormalities in pharyngeal arch artery patterning, which include persistent first and second pharyngeal arteries, resulting in additional branches from common carotid arteries. Neural crest cell labeling with Wnt1-Cre transgene and immunostaining for smooth muscle cell markers revealed that neural crest cells abnormally differentiate into smooth muscle cells at the first and second pharyngeal arteries of Ednra knock-out embryos. By contrast, Dlx5/Dlx6 knockout little affect the development of pharyngeal arch arteries and coronary arteries, the latter of which is also contributed by neural crest cells through an Edn-dependent mechanism. These findings indicate that the Edn1/Ednra signaling regulates neural crest differentiation to ensure the proper patterning of pharyngeal arch arteries, which is independent of the regional identification of the pharyngeal arches along the dorsoventral axis mediated by Dlx5/Dlx6.


Asunto(s)
Arterias/metabolismo , Tipificación del Cuerpo/genética , Región Branquial/metabolismo , Endotelina-1/genética , Cresta Neural/metabolismo , Receptores de Endotelina/genética , Animales , Arterias/anomalías , Región Branquial/anomalías , Diferenciación Celular , Embrión de Mamíferos , Endotelina-1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Recombinación Homóloga , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Cresta Neural/anomalías , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Receptores de Endotelina/metabolismo , Transducción de Señal
18.
Nat Commun ; 3: 1267, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23232397

RESUMEN

Neural crest cells constitute a multipotent cell population that gives rise to diverse cell lineages. The neural crest arising from the postotic hindbrain is known as the 'cardiac' neural crest, and contributes to the great vessels and outflow tract endocardial cushions, but the neural crest contribution to structures within the heart remains largely controversial. Here we demonstrate that neural crest cells from the preotic region migrate into the heart and differentiate into coronary artery smooth muscle cells. Preotic neural crest cells preferentially distribute to the conotruncal region and interventricular septum. Ablation of the preotic neural crest causes abnormalities in coronary septal branch and orifice formation. Mice and chicks lacking endothelin signalling show similar abnormalities in the coronary artery, indicating its involvement in neural crest-dependent coronary artery formation. This is the first report that reveals the preotic neural crest contribution to heart development and smooth muscle heterogeneity within a coronary artery.


Asunto(s)
Vasos Coronarios/embriología , Endotelinas/fisiología , Músculo Liso Vascular/embriología , Cresta Neural/embriología , Transducción de Señal/fisiología , Animales , Embrión de Pollo , Vasos Coronarios/crecimiento & desarrollo , Vasos Coronarios/fisiología , Coturnix/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Músculo Liso Vascular/crecimiento & desarrollo , Músculo Liso Vascular/fisiología , Cresta Neural/citología , Cresta Neural/fisiología
19.
Gene Expr Patterns ; 11(7): 371-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21565284

RESUMEN

The endothelin (Edn) system plays pleiotropic roles in renal function and various disease processes through two distinct G protein-coupled receptors, Edn receptors type-A (Ednra) and type-B (Ednrb). However, difficulties in the accurate identification of receptor-expressing cells in situ have made it difficult to dissect their diverse action in renal (patho)physiology. We have recently established mouse lines in which lacZ and EGFP are 'knocked-in' to the Ednra locus to faithfully mark Ednra-expressing cells. Here we analyzed these mice for their expression in the kidney to characterize Ednra-expressing cells. Ednra expression was first observed in undifferentiated mesenchymal cells around the ureteric bud at E12.5. Thereafter, Ednra expression was widely observed in vascular smooth muscle cells, JG cells and mesenchymal cells in the interstitium. After growth, the expression became confined to vascular smooth muscle cells, pericytes and renin-producing JG cells. By contrast, most cells in the nephron and vascular endothelial cells did not express Ednra. These results indicate that Ednra expression may be linked with non-epithelial fate determination and differentiation of metanephric mesenchyme. Ednra-lacZ/EGFP knock-in mice may serve as a useful tool in studies on renal function and pathophysiology of various renal diseases.


Asunto(s)
Riñón/citología , Riñón/metabolismo , Receptor de Endotelina A/genética , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Nefronas/citología , Nefronas/metabolismo , Pericitos/citología , Pericitos/metabolismo
20.
J Clin Invest ; 120(8): 2817-28, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20644252

RESUMEN

Sirtuins are a phylogenetically conserved NAD+-dependent protein deacetylase/ADP-ribosyltransferase family implicated in diverse biological processes. Several family members localize to mitochondria, the function of which is thought to determine the developmental potential of preimplantation embryos. We have therefore characterized the role of sirtuins in mouse preimplantation development under in vitro culture conditions. All sirtuin members were expressed in eggs, and their expression gradually decreased until the blastocyst stage. Treatment with sirtuin inhibitors resulted in increased intracellular ROS levels and decreased blastocyst formation. These effects were recapitulated by siRNA-induced knockdown of Sirt3, which is involved in mitochondrial energy metabolism, and in Sirt3-/- embryos. The antioxidant N-acetyl-L-cysteine and low-oxygen conditions rescued these adverse effects. When Sirt3-knockdown embryos were transferred to pseudopregnant mice after long-term culture, implantation and fetal growth rates were decreased, indicating that Sirt3-knockdown embryos were sensitive to in vitro conditions and that the effect was long lasting. Further experiments revealed that maternally derived Sirt3 was critical. Sirt3 inactivation increased mitochondrial ROS production, leading to p53 upregulation and changes in downstream gene expression. The inactivation of p53 improved the developmental outcome of Sirt3-knockdown embryos, indicating that the ROS-p53 pathway was responsible for the developmental defects. These results indicate that Sirt3 plays a protective role in preimplantation embryos against stress conditions during in vitro fertilization and culture.


Asunto(s)
Blastocisto/fisiología , Desarrollo Embrionario , Fertilización In Vitro , Estrés Oxidativo , Sirtuina 3/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Células 3T3 NIH , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/antagonistas & inhibidores , Sirtuina 3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA