Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39001200

RESUMEN

Acute lymphoblastic leukemia, commonly referred to as ALL, is a type of cancer that can affect both the blood and the bone marrow. The process of diagnosis is a difficult one since it often calls for specialist testing, such as blood tests, bone marrow aspiration, and biopsy, all of which are highly time-consuming and expensive. It is essential to obtain an early diagnosis of ALL in order to start therapy in a timely and suitable manner. In recent medical diagnostics, substantial progress has been achieved through the integration of artificial intelligence (AI) and Internet of Things (IoT) devices. Our proposal introduces a new AI-based Internet of Medical Things (IoMT) framework designed to automatically identify leukemia from peripheral blood smear (PBS) images. In this study, we present a novel deep learning-based fusion model to detect ALL types of leukemia. The system seamlessly delivers the diagnostic reports to the centralized database, inclusive of patient-specific devices. After collecting blood samples from the hospital, the PBS images are transmitted to the cloud server through a WiFi-enabled microscopic device. In the cloud server, a new fusion model that is capable of classifying ALL from PBS images is configured. The fusion model is trained using a dataset including 6512 original and segmented images from 89 individuals. Two input channels are used for the purpose of feature extraction in the fusion model. These channels include both the original and the segmented images. VGG16 is responsible for extracting features from the original images, whereas DenseNet-121 is responsible for extracting features from the segmented images. The two output features are merged together, and dense layers are used for the categorization of leukemia. The fusion model that has been suggested obtains an accuracy of 99.89%, a precision of 99.80%, and a recall of 99.72%, which places it in an excellent position for the categorization of leukemia. The proposed model outperformed several state-of-the-art Convolutional Neural Network (CNN) models in terms of performance. Consequently, this proposed model has the potential to save lives and effort. For a more comprehensive simulation of the entire methodology, a web application (Beta Version) has been developed in this study. This application is designed to determine the presence or absence of leukemia in individuals. The findings of this study hold significant potential for application in biomedical research, particularly in enhancing the accuracy of computer-aided leukemia detection.


Asunto(s)
Aprendizaje Profundo , Internet de las Cosas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Inteligencia Artificial , Leucemia/diagnóstico , Leucemia/clasificación , Leucemia/patología , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
2.
Sensors (Basel) ; 23(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37896565

RESUMEN

The Internet of Things (IoT) is a transformative technology that is reshaping industries and daily life, leading us towards a connected future that is full of possibilities and innovations. In this paper, we present a robust framework for the application of Internet of Things (IoT) technology in the agricultural sector in Bangladesh. The framework encompasses the integration of IoT, data mining techniques, and cloud monitoring systems to enhance productivity, improve water management, and provide real-time crop forecasting. We conducted rigorous experimentation on the framework. We achieve an accuracy of 87.38% for the proposed model in predicting data harvest. Our findings highlight the effectiveness and transparency of the framework, underscoring the significant potential of the IoT in transforming agriculture and empowering farmers with data-driven decision-making capabilities. The proposed framework might be very impactful in real-life agriculture, especially for monsoon agriculture-based countries like Bangladesh.


Asunto(s)
Agricultura , Tecnología , Bangladesh , Agricultura/métodos
3.
Comput Biol Med ; 168: 107789, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042105

RESUMEN

The worldwide COVID-19 pandemic has profoundly influenced the health and everyday experiences of individuals across the planet. It is a highly contagious respiratory disease requiring early and accurate detection to curb its rapid transmission. Initial testing methods primarily revolved around identifying the genetic composition of the coronavirus, exhibiting a relatively low detection rate and requiring a time-intensive procedure. To address this challenge, experts have suggested using radiological imagery, particularly chest X-rays, as a valuable approach within the diagnostic protocol. This study investigates the potential of leveraging radiographic imaging (X-rays) with deep learning algorithms to swiftly and precisely identify COVID-19 patients. The proposed approach elevates the detection accuracy by fine-tuning with appropriate layers on various established transfer learning models. The experimentation was conducted on a COVID-19 X-ray dataset containing 2000 images. The accuracy rates achieved were impressive of 99.55%, 97.32%, 99.11%, 99.55%, 99.11% and 100% for Xception, InceptionResNetV2, ResNet50 , ResNet50V2, EfficientNetB0 and EfficientNetB4 respectively. The fine-tuned EfficientNetB4 achieved an excellent accuracy score, showcasing its potential as a robust COVID-19 detection model. Furthermore, EfficientNetB4 excelled in identifying Lung disease using Chest X-ray dataset containing 4,350 Images, achieving remarkable performance with an accuracy of 99.17%, precision of 99.13%, recall of 99.16%, and f1-score of 99.14%. These results highlight the promise of fine-tuned transfer learning for efficient lung detection through medical imaging, especially with X-ray images. This research offers radiologists an effective means of aiding rapid and precise COVID-19 diagnosis and contributes valuable assistance for healthcare professionals in accurately identifying affected patients.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , COVID-19/diagnóstico por imagen , Prueba de COVID-19 , Pandemias , Poder Psicológico
4.
Digit Health ; 10: 20552076241271867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175924

RESUMEN

Objective: Diabetes is a metabolic disorder that causes the risk of stroke, heart disease, kidney failure, and other long-term complications because diabetes generates excess sugar in the blood. Machine learning (ML) models can aid in diagnosing diabetes at the primary stage. So, we need an efficient ML model to diagnose diabetes accurately. Methods: In this paper, an effective data preprocessing pipeline has been implemented to process the data and random oversampling to balance the data, handling the imbalance distributions of the observational data more sophisticatedly. We used four different diabetes datasets to conduct our experiments. Several ML algorithms were used to determine the best models to predict diabetes faultlessly. Results: The performance analysis demonstrates that among all ML algorithms, random forest surpasses the current works with an accuracy rate of 86% and 98.48% for Dataset 1 and Dataset 2; extreme gradient boosting and decision tree surpass with an accuracy rate of 99.27% and 100% for Dataset 3 and Dataset 4, respectively. Our proposal can increase accuracy by 12.15% compared to the model without preprocessing. Conclusions: This excellent research finding indicates that the proposed models might be employed to produce more accurate diabetes predictions to supplement current preventative interventions to reduce the incidence of diabetes and its associated costs.

5.
J Pathol Inform ; 15: 100371, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38510072

RESUMEN

Chronic kidney diseases (CKDs) are a significant public health issue with potential for severe complications such as hypertension, anemia, and renal failure. Timely diagnosis is crucial for effective management. Leveraging machine learning within healthcare offers promising advancements in predictive diagnostics. In this paper, we developed a machine learning-based kidney diseases prediction (ML-CKDP) model with dual objectives: to enhance dataset preprocessing for CKD classification and to develop a web-based application for CKD prediction. The proposed model involves a comprehensive data preprocessing protocol, converting categorical variables to numerical values, imputing missing data, and normalizing via Min-Max scaling. Feature selection is executed using a variety of techniques including Correlation, Chi-Square, Variance Threshold, Recursive Feature Elimination, Sequential Forward Selection, Lasso Regression, and Ridge Regression to refine the datasets. The model employs seven classifiers: Random Forest (RF), AdaBoost (AdaB), Gradient Boosting (GB), XgBoost (XgB), Naive Bayes (NB), Support Vector Machine (SVM), and Decision Tree (DT), to predict CKDs. The effectiveness of the models is assessed by measuring their accuracy, analyzing confusion matrix statistics, and calculating the Area Under the Curve (AUC) specifically for the classification of positive cases. Random Forest (RF) and AdaBoost (AdaB) achieve a 100% accuracy rate, evident across various validation methods including data splits of 70:30, 80:20, and K-Fold set to 10 and 15. RF and AdaB consistently reach perfect AUC scores of 100% across multiple datasets, under different splitting ratios. Moreover, Naive Bayes (NB) stands out for its efficiency, recording the lowest training and testing times across all datasets and split ratios. Additionally, we present a real-time web-based application to operationalize the model, enhancing accessibility for healthcare practitioners and stakeholders. Web app link: https://rajib-research-kedney-diseases-prediction.onrender.com/.

6.
FEBS Open Bio ; 14(7): 1166-1191, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783639

RESUMEN

Hypopharyngeal cancer is a disease that is associated with EGFR-mutated lung adenocarcinoma. Here we utilized a bioinformatics approach to identify genetic commonalities between these two diseases. To this end, we examined microarray datasets from GEO (Gene Expression Omnibus) to identify differentially expressed genes, common genes, and hub genes between the selected two diseases. Our analyses identified potential therapeutic molecules for the selected diseases based on 10 hub genes with the highest interactions according to the degree topology method and the maximum clique centrality (MCC). These therapeutic molecules may have the potential for simultaneous treatment of these diseases.


Asunto(s)
Adenocarcinoma del Pulmón , Biología Computacional , Receptores ErbB , Redes Reguladoras de Genes , Neoplasias Hipofaríngeas , Neoplasias Pulmonares , Mutación , Humanos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Redes Reguladoras de Genes/genética , Adenocarcinoma del Pulmón/genética , Neoplasias Hipofaríngeas/genética , Biología Computacional/métodos , Neoplasias Pulmonares/genética , Regulación Neoplásica de la Expresión Génica/genética , Perfilación de la Expresión Génica
7.
Biomed Mater Devices ; : 1-17, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37363136

RESUMEN

Alzheimer's disease (AD) is one of the leading causes of dementia among older people. In addition, a considerable portion of the world's population suffers from metabolic problems, such as Alzheimer's disease and diabetes. Alzheimer's disease affects the brain in a degenerative manner. As the elderly population grows, this illness can cause more people to become inactive by impairing their memory and physical functionality. This might impact their family members and the financial, economic, and social spheres. Researchers have recently investigated different machine learning and deep learning approaches to detect such diseases at an earlier stage. Early diagnosis and treatment of AD help patients to recover from it successfully and with the least harm. This paper proposes a machine learning model that comprises GaussianNB, Decision Tree, Random Forest, XGBoost, Voting Classifier, and GradientBoost to predict Alzheimer's disease. The model is trained using the open access series of imaging studies (OASIS) dataset to evaluate the performance in terms of accuracy, precision, recall, and F1 score. Our findings showed that the voting classifier attained the highest validation accuracy of 96% for the AD dataset. Therefore, ML algorithms have the potential to drastically lower Alzheimer's disease annual mortality rates through accurate detection.

8.
Comput Biol Chem ; 107: 107974, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944386

RESUMEN

An epigenetic modification is DNA N4-methylcytosine (4mC) that affects several biological functions without altering the DNA nucleotides, including DNA conformation, cell development, replication, stability, and DNA structural changes. To prevent restriction enzyme from damaging self-DNA, 4mC performs a critical role in restriction-modification functions. Existing studies mainly focused on finding hand-crafted features to identify 4mC locations, but these methods are inefficient due to high time consuming and high costs. In our research work, we propose a 4mC-CGRU which is a deep learning-based computational model with a standard encoding method to identify the 4mC sites from DNA sequences that learned autonomous feature selection in the Rosaceae genome, particularly in Rosa chinensis (R. chinensis) and Fragaria vesca (F. vesca). The proposed model consists of a convolutional neural network (CNN) and a gated recurrent unit network (GRU)-based model for identifying 4mC sites from Fragaria vesca and Rosa chinensis in the genomes. The CNN model extracts useful features from the datasets and the GRU classifies the DNA sequences. Thus, our approach can automatically extract important features to detect relative sites from DNA sequence. The performance analysis shows that the proposed model consistently outperforms over the state-of-the-art works in detecting 4mC sites.


Asunto(s)
Fragaria , Rosaceae , Rosaceae/genética , Genoma , ADN/química , Epigénesis Genética , Redes Neurales de la Computación , Fragaria/genética
9.
Diagnostics (Basel) ; 13(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766662

RESUMEN

COVID-19 is a severe respiratory contagious disease that has now spread all over the world. COVID-19 has terribly impacted public health, daily lives and the global economy. Although some developed countries have advanced well in detecting and bearing this coronavirus, most developing countries are having difficulty in detecting COVID-19 cases for the mass population. In many countries, there is a scarcity of COVID-19 testing kits and other resources due to the increasing rate of COVID-19 infections. Therefore, this deficit of testing resources and the increasing figure of daily cases encouraged us to improve a deep learning model to aid clinicians, radiologists and provide timely assistance to patients. In this article, an efficient deep learning-based model to detect COVID-19 cases that utilizes a chest X-ray images dataset has been proposed and investigated. The proposed model is developed based on ResNet50V2 architecture. The base architecture of ResNet50V2 is concatenated with six extra layers to make the model more robust and efficient. Finally, a Grad-CAM-based discriminative localization is used to readily interpret the detection of radiological images. Two datasets were gathered from different sources that are publicly available with class labels: normal, confirmed COVID-19, bacterial pneumonia and viral pneumonia cases. Our proposed model obtained a comprehensive accuracy of 99.51% for four-class cases (COVID-19/normal/bacterial pneumonia/viral pneumonia) on Dataset-2, 96.52% for the cases with three classes (normal/ COVID-19/bacterial pneumonia) and 99.13% for the cases with two classes (COVID-19/normal) on Dataset-1. The accuracy level of the proposed model might motivate radiologists to rapidly detect and diagnose COVID-19 cases.

10.
Genes (Basel) ; 14(3)2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36980853

RESUMEN

DNA (Deoxyribonucleic Acid) N4-methylcytosine (4mC), a kind of epigenetic modification of DNA, is important for modifying gene functions, such as protein interactions, conformation, and stability in DNA, as well as for the control of gene expression throughout cell development and genomic imprinting. This simply plays a crucial role in the restriction-modification system. To further understand the function and regulation mechanism of 4mC, it is essential to precisely locate the 4mC site and detect its chromosomal distribution. This research aims to design an efficient and high-throughput discriminative intelligent computational system using the natural language processing method "word2vec" and a multi-configured 1D convolution neural network (1D CNN) to predict 4mC sites. In this article, we propose a grid search-based multi-layer dynamic ensemble system (GS-MLDS) that can enhance existing knowledge of each level. Each layer uses a grid search-based weight searching approach to find the optimal accuracy while minimizing computation time and additional layers. We have used eight publicly available benchmark datasets collected from different sources to test the proposed model's efficiency. Accuracy results in test operations were obtained as follows: 0.978, 0.954, 0.944, 0.961, 0.950, 0.973, 0.948, 0.952, 0.961, and 0.980. The proposed model has also been compared to 16 distinct models, indicating that it can accurately predict 4mC.


Asunto(s)
Aprendizaje Profundo , Animales , ADN/química , Epigénesis Genética
11.
Genes (Basel) ; 14(9)2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37761941

RESUMEN

Biomarker-based cancer identification and classification tools are widely used in bioinformatics and machine learning fields. However, the high dimensionality of microarray gene expression data poses a challenge for identifying important genes in cancer diagnosis. Many feature selection algorithms optimize cancer diagnosis by selecting optimal features. This article proposes an ensemble rank-based feature selection method (EFSM) and an ensemble weighted average voting classifier (VT) to overcome this challenge. The EFSM uses a ranking method that aggregates features from individual selection methods to efficiently discover the most relevant and useful features. The VT combines support vector machine, k-nearest neighbor, and decision tree algorithms to create an ensemble model. The proposed method was tested on three benchmark datasets and compared to existing built-in ensemble models. The results show that our model achieved higher accuracy, with 100% for leukaemia, 94.74% for colon cancer, and 94.34% for the 11-tumor dataset. This study concludes by identifying a subset of the most important cancer-causing genes and demonstrating their significance compared to the original data. The proposed approach surpasses existing strategies in accuracy and stability, significantly impacting the development of ML-based gene analysis. It detects vital genes with higher precision and stability than other existing methods.


Asunto(s)
Neoplasias , Transcriptoma , Transcriptoma/genética , Perfilación de la Expresión Génica , Algoritmos , Benchmarking , Análisis por Conglomerados , Neoplasias/diagnóstico , Neoplasias/genética
12.
Health Informatics J ; 26(4): 3009-3036, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32969296

RESUMEN

Health-related data is stored in a number of repositories that are managed and controlled by different entities. For instance, Electronic Health Records are usually administered by governments. Electronic Medical Records are typically controlled by health care providers, whereas Personal Health Records are managed directly by patients. Recently, Blockchain-based health record systems largely regulated by technology have emerged as another type of repository. Repositories for storing health data differ from one another based on cost, level of security and quality of performance. Not only has the type of repositories increased in recent years, but the quantum of health data to be stored has increased. For instance, the advent of wearable sensors that capture physiological signs has resulted in an exponential growth in digital health data. The increase in the types of repository and amount of data has driven a need for intelligent processes to select appropriate repositories as data is collected. However, the storage allocation decision is complex and nuanced. The challenges are exacerbated when health data are continuously streamed, as is the case with wearable sensors. Although patients are not always solely responsible for determining which repository should be used, they typically have some input into this decision. Patients can be expected to have idiosyncratic preferences regarding storage decisions depending on their unique contexts. In this paper, we propose a predictive model for the storage of health data that can meet patient needs and make storage decisions rapidly, in real-time, even with data streaming from wearable sensors. The model is built with a machine learning classifier that learns the mapping between characteristics of health data and features of storage repositories from a training set generated synthetically from correlations evident from small samples of experts. Results from the evaluation demonstrate the viability of the machine learning technique used.


Asunto(s)
Cadena de Bloques , Registros de Salud Personal , Registros Electrónicos de Salud , Humanos , Aprendizaje Automático , Tecnología
13.
Stud Health Technol Inform ; 254: 105-115, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30306963

RESUMEN

Continuous monitoring of patient's physiological signs has the potential to augment traditional medical practice, particularly in developing countries that have a shortage of healthcare professionals. However, continuously streamed data presents additional security, storage and retrieval challenges and further inhibits initiatives to integrate data to form electronic health record systems. Blockchain technologies enable data to be stored securely and inexpensively without recourse to a trusted authority. Blockchain technologies also promise to provide architectures for electronic health records that do not require huge government expenditure that challenge developing nations. However, Blockchain deployment, particularly with streamed data challenges existing Blockchain algorithms that take too long to place data in a block, and have no mechanism to determine whether every data point in every stream should be stored in such a secure way. This article presents an architecture that involves a Patient Agent, coordinating the insertion of continuous data streams into Blockchains to form an electronic health record.


Asunto(s)
Seguridad Computacional , Registros Electrónicos de Salud , Monitoreo Fisiológico , Telemedicina , Algoritmos , Humanos , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA