Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 27(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35566083

RESUMEN

The efficient regioselective bromination and iodination of the nonsteroidal anti-inflammatory drug (NSAID) carprofen were achieved by using bromine and iodine monochloride in glacial acetic acid. The novel halogenated carprofen derivatives were functionalized at the carboxylic group by esterification. The regioselectivity of the halogenation reaction was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were screened for their in vitro antibacterial activity against planktonic cells and also for their anti-biofilm effect, using Gram-positive bacteria (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). The cytotoxic activity of the novel compounds was tested against HeLa cells. The pharmacokinetic and pharmacodynamic profiles of carprofen derivatives, as well as their toxicity, were established by in silico analyses.


Asunto(s)
Bacterias Gramnegativas , Bacterias Grampositivas , Antibacterianos/química , Antibacterianos/farmacología , Carbazoles , Escherichia coli , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana
2.
Molecules ; 26(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921798

RESUMEN

Multidrug resistance of bacteria is a worrying concern in the therapeutic field and an alternative method to combat it is designing new efflux pump inhibitors (EPIs). This article presents a molecular study of two quinazoline derivatives, labelled BG1189 and BG1190, proposed as EPIs. In silico approach investigates the pharmacodynamic and pharmacokinetic profile of BG1189 and BG1190 quinazolines. Molecular docking and predicted ADMET features suggest that BG1189 and BG1190 may represent attractive candidates as antimicrobial drugs. UV-Vis absorption spectroscopy was employed to study the time stability of quinazoline solutions in water or in dimethyl sulfoxide (DMSO), in constant environmental conditions, and to determine the influence of usual storage temperature, normal room lighting and laser radiation (photostability) on samples stability. The effects of irradiation on BG1189 and BG1190 molecules were also assessed through Fourier-transform infrared (FTIR) spectroscopy. FTIR spectra showed that laser radiation breaks some chemical bonds affecting the substituents and the quinazoline radical of the compounds.


Asunto(s)
Quinazolinas/química , Antibacterianos/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier
3.
Molecules ; 26(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34299440

RESUMEN

(1) Background: The research aims to find new treatments for neurodegenerative diseases, in particular, Alzheimer's disease. (2) Methods: This article presents a bioinformatics and pathology study of new Schiff bases, (EZ)-N'-benzylidene-(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide derivatives, and aims to evaluate the drug-like, pharmacokinetic, pharmacodynamic and pharmacogenomic properties, as well as to predict the binding to therapeutic targets by applying bioinformatics, cheminformatics and computational pharmacological methods. (3) Results: We obtained these Schiff bases by condensing (2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide with aromatic aldehydes, using the advantages of microwave irradiation. The newly synthesized compounds were characterized spectrally, using FT-IR and NMR spectroscopy, which confirmed their structure. Using bioinformatics tools, we noticed that all new compounds are drug-likeness features and may be proposed as potentially neuropsychiatric drugs (4) Conclusions: Using bioinformatics tools, we determined that the new compound 1e had a high potential to be used as a good candidate in neurodegenerative disorders treatment.


Asunto(s)
Carbazoles/química , Bases de Schiff/química , Bases de Schiff/síntesis química , Aldehídos/química , Antibacterianos/farmacología , Carbazoles/síntesis química , Carbazoles/farmacología , Quimioinformática/métodos , Biología Computacional/métodos , Glucosamina/química , Estructura Molecular , Enfermedades Neurodegenerativas/tratamiento farmacológico , Espectroscopía Infrarroja por Transformada de Fourier/métodos
4.
Molecules ; 25(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941125

RESUMEN

In a drug-repurposing-driven approach for speeding up the development of novel antimicrobial agents, this paper presents for the first time in the scientific literature the synthesis, physico-chemical characterization, in silico analysis, antimicrobial activity against bacterial and fungal strains in planktonic and biofilm growth state, as well as the in vitro cytotoxicity of some new 6,11-dihydrodibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)oximes. The structures of intermediary and final substances (compounds 7a-j) were confirmed by 1H-NMR, 13C-NMR and IR spectra, as well as by elemental analysis. The in silico bioinformatic and cheminformatic studies evidenced an optimal pharmacokinetic profile for the synthesized compounds 7a-j, characterized by an average lipophilic character predicting good cell membrane permeability and intestinal absorption; low maximum tolerated dose for humans; potassium channels encoded by the hERG I and II genes as potential targets and no carcinogenic effects. The obtained compounds exhibited a higher antimicrobial activity against the planktonic Gram-positive Staphylococcus aureus and Bacillus subtilis strains and the Candida albicans fungal strain. The obtained compounds also inhibited the ability of S. aureus, B. subtilis, Escherichia coli and C. albicans strains to colonize the inert substratum, accounting for their possible use as antibiofilm agents. All the active compounds exhibited low or acceptable cytotoxicity levels on the HCT8 cells, ensuring the potential use of these compounds for the development of new antimicrobial drugs with minimal side effects on the human cells and tissues.


Asunto(s)
Antiinfecciosos , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Candida albicans/fisiología , Simulación por Computador , Oximas , Antiinfecciosos/química , Antiinfecciosos/farmacología , Biopelículas/crecimiento & desarrollo , Línea Celular , Humanos , Oximas/química , Oximas/farmacología
5.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013686

RESUMEN

Neuropsychiatric disorders are induced by various risk factors, including direct exposure to environmental chemicals. Arsenic exposure induces neurodegeneration and severe psychiatric disorders, but the molecular mechanisms by which brain damage is induced are not yet elucidated. Our aim is to better understand the molecular mechanisms of arsenic toxicity in the brain and to elucidate possible ways to prevent arsenic neurotoxicity, by reviewing significant experimental, bioinformatics, and cheminformatics studies. Brain damage induced by arsenic exposure is discussed taking in account: the correlation between neuropsychiatric disorders and the presence of arsenic and its derivatives in the brain; possible molecular mechanisms by which arsenic induces disturbances of cognitive and behavioral human functions; and arsenic influence during psychiatric treatments. Additionally, we present bioinformatics and cheminformatics tools used for studying brain toxicity of arsenic and its derivatives, new nanoparticles used as arsenic delivery systems into the human body, and experimental ways to prevent arsenic contamination by its removal from water. The main aim of the present paper is to correlate bioinformatics, cheminformatics, and experimental information on the molecular mechanism of cerebral damage induced by exposure to arsenic, and to elucidate more efficient methods used to reduce its toxicity in real groundwater.


Asunto(s)
Arsénico/efectos adversos , Biología Computacional , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente , Trastornos Mentales/etiología , Trastornos Mentales/prevención & control , Arsénico/química , Arsénico/toxicidad , Biomarcadores , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Cognición/efectos de los fármacos , Humanos , Trastornos Mentales/epidemiología , Trastornos Mentales/metabolismo , Relación Estructura-Actividad , Contaminantes Químicos del Agua/efectos adversos
6.
Mini Rev Med Chem ; 24(2): 159-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36994982

RESUMEN

Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Humanos , Aconitina/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Alcaloides/farmacología , Alcaloides/uso terapéutico
7.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37375790

RESUMEN

The chemical compounds from extracts of three Ranunculaceae species, Aconitum toxicum Rchb., Anemone nemorosa L. and Helleborus odorus Waldst. & Kit. ex Willd., respectively, were isolated using the HPLC purification technique and analyzed from a bioinformatics point of view. The classes of compounds identified based on the proportion in the rhizomes/leaves/flowers used for microwave-assisted extraction and ultrasound-assisted extraction were alkaloids and phenols. Here, the quantifying of pharmacokinetics, pharmacogenomics and pharmacodynamics helps us to identify the actual biologically active compounds. Our results showed that (i) pharmacokinetically, the compounds show good absorption at the intestinal level and high permeability at the level of the central nervous system for alkaloids; (ii) regarding pharmacogenomics, alkaloids can influence tumor sensitivity and the effectiveness of some treatments; (iii) and pharmacodynamically, the compounds of these Ranunculaceae species bind to carbonic anhydrase and aldose reductase. The results obtained showed a high affinity of the compounds in the binding solution at the level of carbonic anhydrases. Carbonic anhydrase inhibitors extracted from natural sources can represent the path to new drugs useful both in the treatment of glaucoma, but also of some renal, neurological and even neoplastic diseases. The identification of natural compounds with the role of inhibitors can have a role in different types of pathologies, both associated with studied and known receptors such as carbonic anhydrase and aldose reductase, as well as new pathologies not yet addressed.

8.
Pharmaceutics ; 15(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631339

RESUMEN

Malignant melanoma poses a significant global health burden. It is the most aggressive and lethal form of skin cancer, attributed to various risk factors such as UV radiation exposure, genetic modifications, chemical carcinogens, immunosuppression, and fair complexion. Photodynamic therapy is a promising minimally invasive treatment that uses light to activate a photosensitizer, resulting in the formation of reactive oxygen species, which ultimately promote cell death. When selecting photosensitizers for melanoma photodynamic therapy, the presence of melanin should be considered. Melanin absorbs visible radiation similar to most photosensitizers and has antioxidant properties, which undermines the reactive species generated in photodynamic therapy processes. These characteristics have led to further research for new photosensitizing platforms to ensure better treatment results. The development of photosensitizers has advanced with the use of nanotechnology, which plays a crucial role in enhancing solubility, optical absorption, and tumour targeting. This paper reviews the current approaches (that use the synergistic effect of different photosensitizers, nanocarriers, chemotherapeutic agents) in the photodynamic therapy of melanoma.

9.
Pharmaceutics ; 15(4)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37111678

RESUMEN

The combination of TiO2 nanoparticles (NPs) and photosensitizers (PS) may offer significant advantages in photodynamic therapy (PDT) of melanoma, such as improved cell penetration, enhanced ROS production, and cancer selectivity. In this study, we aimed to investigate the photodynamic effect of 5,10,15,20-(Tetra-N-methyl-4-pyridyl)porphyrin tetratosylate (TMPyP4) complexes with TiO2 NPs on human cutaneous melanoma cells by irradiation with 1 mW/cm2 blue light. The porphyrin conjugation with the NPs was analyzed by absorption and FTIR spectroscopy. The morphological characterization of the complexes was performed by Scanning Electron Microscopy and Dynamic Light Scattering. The singlet oxygen generation was analyzed by phosphorescence at 1270 nm. Our predictions indicated that the non-irradiated investigated porphyrin has a low degree of toxicity. The photodynamic activity of the TMPyP4/TiO2 complex was assessed on the human melanoma Mel-Juso cell line and non-tumor skin CCD-1070Sk cell line treated with various concentrations of the PS and subjected to dark conditions and visible light-irradiation. The tested complexes of TiO2 NPs with TMPyP4 presented cytotoxicity only after activation by blue light (405 nm) mediated by the intracellular production of ROS in a dose-dependent manner. The photodynamic effect observed in this evaluation was higher in melanoma cells than the effect observed in the non-tumor cell line, demonstrating a promising potential for cancer-selectivity in PDT of melanoma.

10.
Front Cell Infect Microbiol ; 13: 1181516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680749

RESUMEN

Introduction: One of the promising leads for the rapid discovery of alternative antimicrobial agents is to repurpose other drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs) for fighting bacterial infections and antimicrobial resistance. Methods: A series of new carbazole derivatives based on the readily available anti-inflammatory drug carprofen has been obtained by nitration, halogenation and N-alkylation of carprofen and its esters. The structures of these carbazole compounds were assigned by NMR and IR spectroscopy. Regioselective electrophilic substitution by nitration and halogenation at the carbazole ring was assigned from H NMR spectra. The single crystal X-ray structures of two representative derivatives obtained by dibromination of carprofen, were also determined. The total antioxidant capacity (TAC) was measured using the DPPH method. The antimicrobial activity assay was performed using quantitative methods, allowing establishment of the minimal inhibitory/bactericidal/biofilm eradication concentrations (MIC/MBC/MBEC) on Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) strains. Computational assays have been performed to assess the drug- and lead-likeness, pharmacokinetics (ADME-Tox) and pharmacogenomics profiles. Results and discussion: The crystal X-ray structures of 3,8-dibromocarprofen and its methyl ester have revealed significant differences in their supramolecular assemblies. The most active antioxidant compound was 1i, bearing one chlorine and two bromine atoms, as well as the CO2Me group. Among the tested derivatives, 1h bearing one chlorine and two bromine atoms has exhibited the widest antibacterial spectrum and the most intensive inhibitory activity, especially against the Gram-positive strains, in planktonic and biofilm growth state. The compounds 1a (bearing one chlorine, one NO2 and one CO2Me group) and 1i (bearing one chlorine, two bromine atoms and a CO2Me group) exhibited the best antibiofilm activity in the case of the P. aeruginosa strain. Moreover, these compounds comply with the drug-likeness rules, have good oral bioavailability and are not carcinogenic or mutagenic. The results demonstrate that these new carbazole derivatives have a molecular profile which deserves to be explored further for the development of novel antibacterial and antibiofilm agents.


Asunto(s)
Antiinflamatorios no Esteroideos , Cloro , Bromo , Antioxidantes/farmacología , Reposicionamiento de Medicamentos , Antiinflamatorios , Carbazoles/farmacología , Antibacterianos/farmacología , Biopelículas
11.
Pharmaceutics ; 14(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36365208

RESUMEN

Photodynamic therapy has the potential to be a new and effective cancer treatment. Even if in vitro and in vivo research show promise, the molecular mechanism remains unclear. In this study, molecular docking simulations predict the binding affinity of the 5,10,15,20-tetrakis(4'-sulfonatophenyl)-porphyrin tetraammonium photosensitizer on several potential targets in photodynamic treatment. Our results indicate that this photosensitizer binds to several receptor targets, including B-cell lymphoma 2 (BCL-2) and other related proteins BCL-xL, MCL-1, or A1. The binding affinity of the porphyrin derivative with human serum albumin was determined using UV-vis absorption spectroscopy and predicted using molecular docking. We conclude that the studied porphyrin photosensitizer binds to human serum albumin and may inhibit the cancer cell line through its interactions with HIS and MET AA residues from BCL-2, MCL-1, and ß-catenin receptors or through its low estimated free energy of binding when interacting with A1 and BCL-B receptors.

12.
Pharmaceutics ; 13(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575524

RESUMEN

The current treatment of depression involves antidepressant synthetic drugs that have a variety of side effects. In searching for alternatives, natural compounds could represent a solution, as many studies reported that such compounds modulate the nervous system and exhibit antidepressant effects. We used bioinformatics methods to predict the antidepressant effect of ten natural compounds with neuroleptic activity, reported in the literature. For all compounds we computed their drug-likeness, absorption, distribution, metabolism, excretion (ADME), and toxicity profiles. Their antidepressant and neuroleptic activities were predicted by 3D-ALMOND-QSAR models built by considering three important targets, namely serotonin transporter (SERT), 5-hydroxytryptamine receptor 1A (5-HT1A), and dopamine D2 receptor. For our QSAR models we have used the following molecular descriptors: hydrophobicity, electrostatic, and hydrogen bond donor/acceptor. Our results showed that all compounds present drug-likeness features as well as promising ADME features and no toxicity. Most compounds appear to modulate SERT, and fewer appear as ligands for 5-HT1A and D2 receptors. From our prediction, linalyl acetate appears as the only ligand for all three targets, neryl acetate appears as a ligand for SERT and D2 receptors, while 1,8-cineole appears as a ligand for 5-HT1A and D2 receptors.

13.
Biomolecules ; 11(11)2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34827690

RESUMEN

Diabetes represents a major health problem, involving a severe imbalance of blood sugar levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects. Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural (gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.


Asunto(s)
Simulación del Acoplamiento Molecular , Biología Computacional , Diabetes Mellitus , Gymnema sylvestre
14.
Pharmaceutics ; 13(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34959411

RESUMEN

The purpose of this study was to investigate the effectiveness in photodynamic therapy of iron oxide nanoparticles (γ-Fe2O3 NPs), synthesized by laser pyrolysis technique, functionalized with 5,10,15,20-(Tetra-4-sulfonatophenyl) porphyrin tetraammonium (TPPS) on human cutaneous melanoma cells, after only 1 min blue light exposure. The efficiency of porphyrin loading on the iron oxide nanocarriers was estimated by using absorption and FTIR spectroscopy. The singlet oxygen yield was determined via transient characteristics of singlet oxygen phosphorescence at 1270 nm both for porphyrin functionalized nanoparticles and rose bengal used as standard. The irradiation was performed with a LED (405 nm, 1 mW/cm2) for 1 min after melanoma cells were treated with TPPS functionalized iron oxide nanoparticles (γ-Fe2O3 NPs_TPPS) and incubated for 24 h. Biological tests revealed a high anticancer effect of γ-Fe2O3 NPs_TPPS complexes indi-cated by the inhibition of tumor cell proliferation, reduction of cell adhesion, and induction of cell death through ROS generated by TPPS under light exposure. The biological assays were combined with the pharmacokinetic prediction of the porphyrin.

15.
J Photochem Photobiol B ; 211: 111997, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32829256

RESUMEN

The worldwide infection with the new Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) demands urgently new potent treatment(s). In this study we predict, using molecular docking, the binding affinity of 15 phenothiazines (antihistaminic and antipsychotic drugs) when interacting with the main protease (Mpro) of SARS-CoV-2. Additionally, we tested the binding affinity of photoproducts identified after irradiation of phenothiazines with Nd:YAG laser beam at 266 nm respectively 355 nm. Our results reveal that thioridazine and its identified photoproducts (mesoridazine and sulforidazine) have high biological activity on the virus Mpro. This shows that thioridazine and its two photoproducts might represent new potent medicines to be used for treatment in this outbreak. Such results recommend these medicines for further tests on cell cultures infected with SARS-CoV-2 or animal model. The transition to human subjects of the suggested treatment will be smooth due to the fact that the drugs are already available on the market.


Asunto(s)
Antivirales/farmacología , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Fenotiazinas/farmacología , Neumonía Viral/tratamiento farmacológico , Antivirales/química , Antivirales/efectos de la radiación , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Láseres de Estado Sólido , Simulación del Acoplamiento Molecular , Pandemias , Fenotiazinas/química , Fenotiazinas/efectos de la radiación , Procesos Fotoquímicos , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Tratamiento Farmacológico de COVID-19
16.
Sci Rep ; 10(1): 18043, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093568

RESUMEN

Antibiotic resistance became an increasing risk for population health threatening our ability to fight infectious diseases. The objective of this study was to evaluate the activity of laser irradiated thioridazine (TZ) against clinically-relevant bacteria in view to fight antibiotic resistance. TZ in ultrapure water solutions was irradiated (1-240 min) with 266 nm pulsed laser radiation. Irradiated solutions were characterized by UV-Vis and FTIR absorption spectroscopy, thin layer chromatography, laser-induced fluorescence, and dynamic surface tension measurements. Molecular docking studies were made to evaluate the molecular mechanisms of photoproducts action against Staphylococcus aureus and MRSA. More general, solutions were evaluated for their antimicrobial and efflux inhibitory activity against a panel of bacteria of clinical relevance. We observed an enhanced antimicrobial activity of TZ photoproducts against Gram-positive bacteria. This was higher than ciprofloxacin effects for methicillin- and ciprofloxacin-resistant Staphylococcus aureus. Molecular docking showed the Penicillin-binding proteins PBP3 and PBP2a inhibition by sulforidazine as a possible mechanism of action against Staphylococcus aureus and MRSA strains, respectively. Irradiated TZ reveals possible advantages in the treatment of infectious diseases produced by antibiotic-resistant Gram-positive bacteria. TZ repurposing and its photoproducts, obtained by laser irradiation, show accelerated and low-costs of development if compared to chemical synthesis.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/efectos de la radiación , Antipsicóticos/farmacología , Antipsicóticos/efectos de la radiación , Reposicionamiento de Medicamentos/métodos , Rayos Láser , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Tioridazina/farmacología , Tioridazina/efectos de la radiación , Farmacorresistencia Bacteriana , Soluciones , Agua
17.
Curr Med Chem ; 27(1): 78-98, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30378477

RESUMEN

BACKGROUND: Synthetic compounds with pharmaceutical applications in brain disorders are daily designed and synthesized, with well first effects but also seldom severe side effects. This imposes the search for alternative therapies based on the pharmaceutical potentials of natural compounds. The natural compounds isolated from various plants and arthropods venom are well known for their antimicrobial (antibacterial, antiviral) and antiinflammatory activities, but more studies are needed for a better understanding of their structural and pharmacological features with new therapeutic applications. OBJECTIVES: Here we present some structural and pharmaceutical features of natural compounds isolated from plants and arthropods venom relevant for their efficiency and potency in brain disorders. We present the polytherapeutic effects of natural compounds belonging to terpenes (limonene), monoterpenoids (1,8-cineole) and stilbenes (resveratrol), as well as natural peptides (apamin, mastoparan and melittin). METHODS: Various experimental and in silico methods are presented with special attention on bioinformatics (natural compounds database, artificial neural network) and cheminformatics (QSAR, drug design, computational mutagenesis, molecular docking). RESULTS: In the present paper we reviewed: (i) recent studies regarding the pharmacological potential of natural compounds in the brain; (ii) the most useful databases containing molecular and functional features of natural compounds; and (iii) the most important molecular descriptors of natural compounds in comparison with a few synthetic compounds. CONCLUSION: Our paper indicates that natural compounds are a real alternative for nervous system therapy and represents a helpful tool for the future papers focused on the study of the natural compounds.


Asunto(s)
Encefalopatías , Biología Computacional , Quimioinformática , Simulación por Computador , Humanos , Simulación del Acoplamiento Molecular
18.
Polymers (Basel) ; 12(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256060

RESUMEN

Even today, breast cancer remains a global public problem, with a high mortality rate among women. Nanoparticle (NP) based systems are developed to enhance drug delivery, reducing the toxic effect of medicine molecules. By using iron oxide nanoparticles for cancer treatment, several advantages were highlighted: the ability to target specific locations derived from their magnetic properties and reduced side effects. The aim of this study was to examine on breast cancer cell line the anticancer potential of γ-Fe2O3 NPs loaded with doxorubicin (DOX) and stabilized with carboxymethylcellulose sodium (CMCNa). The γ-Fe2O3 NPs were synthesized by laser pyrolysis technique and their nanometric size and crystallinity were confirmed by X-ray diffraction and transmission electron microscopy. The loading efficiency was estimated by using absorption and fluorescence spectroscopy. The DOX conjugated//CMCNa coated γ-Fe2O3 NPs proved through the biological studies to have a good anticancer effect through the inhibition of tumoral cell proliferation, disruption of the cellular membrane, induction of cell death and reduced effects on normal breast cells. Our data showed that DOX cytotoxicity increases significantly when conjugated with É£-Fe2O3 and É£-Fe2O3_CMCNa, a 50% reduction of cancer cell viability was obtained with a concentration around 0.1 µg/mL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA