Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Chem Chem Phys ; 24(39): 24203-24211, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36168894

RESUMEN

Charge transfer (CT) luminescence of different types of polyhedra, [WO5]4- in Ca3WO5Cl2 and [WO6]6- in Ca3WO6, is characterized by spectroscopic experiments and ab initio calculations. According to the geometry optimization, W6+ ions form five-fold [WO5]4- square pyramids in Ca3WO5Cl2 because of a large interatomic distance between W6+ and Cl- of 3.266 Å. The analysis of the density of electronic states reveals the ionic character of Cl- ions to the W6+ ions in the Ca3WO5Cl2 lattice, resulting in the observed broad luminescence band peak at 488 nm of the single-crystal Ca3WO5Cl2 sample being assigned to the CT transition in the [WO5]4- square pyramid. Compared with the [WO6]6- octahedron in Ca3WO6, the [WO5]4- square pyramid shows an inconsistent CT energy shift: higher CT absorption and lower luminescence energies. The larger bandgap brings about higher absorption energy due to the structural and compositional features of the orthorhombic Ca3WO5Cl2. The redshifted CT luminescence band and small activation energy for the thermal quenching of the Ca3WO5Cl2 sample are explained, assuming that the CT states of the anisotropic [WO5]4- square pyramid take a larger offset in the configurational coordinate diagram than the [WO6]6- octahedron.

2.
Phys Chem Chem Phys ; 24(7): 4348-4357, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108722

RESUMEN

The valence state of Eu ions doped in inorganic compounds is easily influenced by the synthesizing conditions. In this study, X-ray absorption spectroscopy revealed that almost half of Eu ions incorporated in the YSiO2N host were reduced into the divalent state through the sintering process at 1600 °C under a N2 gas atmosphere without any annealing processes. The prepared Eu2+/3+-doped YSiO2N sample showed anomalous deep-red to near-infrared luminescence below 300 K under violet light illumination, whose luminescent properties are discussed through detailed spectroscopic analyses. In the photoluminescence spectra at 4 K, the broad luminescence band ranging from 550 to 1100 nm with a large Stokes shift of 5677 cm-1 was observed, assigned to the recombination emission related to the Eu2+-trapped exciton state. The temperature dependence of luminescence lifetime suggests that the thermal quenching of Eu2+-trapped exciton luminescence takes place through complicated processes in addition to thermal ionization. The energy diagrams based on the spectroscopic results indicate that Eu2+-trapped exciton luminescence in the YSiO2N:Eu2+/3+ sample was observed because all the Eu2+: 5d excited levels are degenerated with the host conduction band, and the relatively stable Eu2+-trapped exciton state in the Y3+ sites is formed just below the conduction band bottom. A comprehensive discussion on the deep-red to near-infrared luminescence in the YSiO2N host could give new insights into the mechanism of Eu2+-trapped exciton luminescence in Y3+ sites, which has potential in near-infrared emitting devices.

3.
Inorg Chem ; 60(24): 19253-19262, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34874698

RESUMEN

The photoluminescence properties of Cr3+-doped LaGaO3 perovskites are investigated by high-pressure spectroscopy. The pressure-induced phase transition from orthorhombic (Pbnm) to rhombohedral (R3̅c) at around 2 GPa is confirmed by Raman spectroscopy. Cr3+-doped LaGaO3 shows deep-red emission peaks around 730 nm due to the zero-phonon line (R-line) and the phonon sidebands, which correspond to Cr3+: 2Eg → 4A2g transitions in the ideal octahedral site and the Cr-Cr pair luminescence (N-line) under ambient condition. Under a high pressure, the R-line shifts to a lower energy at a rate of -13 cm-1/GPa. From the pressure dependence of photoluminescence excitation (PLE) spectra, it is suggested that the redshift of the R-line is caused by the decrease of Racah parameters B and C. Moreover, the N-line luminescence becomes stronger relative to the R-line with increasing pressure and the N-line/R-line can be used to monitor the phase transition pressure. Under a high pressure, the tilt angle of the GaO6 octahedral unit becomes smaller. It implies that the enhanced N-line luminescence is caused by the stronger superexchange interaction between Cr3+ ions due to the increased Cr-O-Cr bond angle closer to 180°.

4.
Inorg Chem ; 59(24): 18374-18383, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33244973

RESUMEN

A single-crystalline defect-less phosphor is desired for efficient luminescence of the therein doped optical activators. In this paper, microsized MgAl2O4:Mn4+ single-crystal phosphors with bright red luminescence were grown in molten LiCl salt at 950 °C, for application in blue LED pumped white lighting. By comparing the phosphor formation from various Mg2+- and Al3+-bearing sources, both the template-formation and the dissolution-diffusion processes were evidenced to account for the formation of the microsized MgAl2O4:Mn4+ crystallites. Using nano γ-Al2O3 as the Al3+-bearing precursor, the uniform MgAl2O4:Mn4+ microcrystallites with a {111} planes-exposed tetragonal bipyramid morphology were obtained. The photoluminescence property was studied at various temperatures, and Mg ↔ Al anti-site disorder induced luminescence broadening was discussed. The Mn4+ 2Eg → 4A2g transition in MgAl2O4 shows a quite short luminescence wavelength peaking at 651 nm and ultrabroadband emission extending to 850 nm. The luminescence is relatively robust against thermal effect with relatively high thermal quenching temperature of 400 K and activation energy of 0.23 eV. Employing the red-emitting MgAl2O4:Mn4+ crystallites, blue LED pumped white lighting prototypes were fabricated which simulate the solar-like spectrum and show neutral to warm white.

5.
Inorg Chem ; 59(20): 15101-15110, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32998510

RESUMEN

Near-infrared (NIR) phosphors are fascinating materials that have numerous applications in diverse fields. In this study, a series of La3Ga5GeO14:Cr3+ phosphors, which was incorporated with Sn4+, Ba2+, and Sc3+, was successfully synthesized using solid-state reaction to explore every cationic site comprehensively. The crystal structures were well resolved by combining synchrotron X-ray diffraction and neutron powder diffraction through joint Rietveld refinements. The trapping of free electrons induced by charge unbalances and lattice vacancies changes the magnetic properties, which was well explained by a Dyson curve in electron paramagnetic resonance. Temperature and pressure-dependent photoluminescence spectra reveal various luminescent properties between strong and weak fields in different dopant centers. The phosphor-converted NIR light-emitting diode (pc-NIR LED) package demonstrates a superior broadband emission that covers the near-infrared (NIR) region of 650-1050 nm. This study can provide researchers with new insight into the control mechanism of multiple-cation-site phosphors and reveal a potential phosphor candidate for practical NIR LED application.

6.
Phys Chem Chem Phys ; 22(35): 19502-19511, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32832961

RESUMEN

Changing the electronic structure of materials by pressure and the accompanying changes in optical properties have attracted scientific interest. We have reported that the energy position of the conduction band (CB) bottom and the crystal field splitting of the Ce3+:5d excited level in Y3Al5-xGaxO12:Ce3+ are changed by applying pressure, which results in the red shifting of the Ce3+:5d → 4f luminescence and the increase of the quenching temperature. We also reported dramatic improvement of the persistent luminescence performance by either Cr3+ or Yb3+ codoping into the Y3Al5-xGaxO12:Ce3+ phosphors. The different trap depths formed by Cr3+ and Yb3+ affect the initial persistent luminescence intensity and the persistent luminescence duration. In this study, the effect of pressure on the persistent luminescence performance was investigated. For the Y3AlGa4O12:Ce3+-Yb3+ phosphor, the slope of persistent luminescence decay curve becomes more gentle with increasing pressure, while for the Y3AlGa4O12:Ce3+-Cr3+ phosphor the slope becomes steeper. These results indicate that the trap depth of Yb3+ becomes deeper and that of Cr3+ becomes shallower with increasing pressure. Based on the pressure-dependence of the luminescence quenching and the trap depth change estimated from the decay slopes, the relative electronic energies of the CB bottom and the Yb2+ (4f14) or Cr2+ (3d4) levels are discussed. The CB bottom energy is increased relative to the ground 1S0 state of Yb2+ with increasing pressure, which results in deepening of the electron trap depth of the Yb2+ state. The opposite tendency of the Cr3+ codoped sample was described by a decreasing tendency of the energy gap between the CB bottom and the Cr2+:eg level, the relative energy level of which is increased by the increase of the crystal field with increasing pressure in the garnet host material, where the electron-trapping Cr2+ ions take the high spin state (t32ge1g) rather than the low-spin state (t42g).

7.
Phys Chem Chem Phys ; 21(5): 2818-2820, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34661586

RESUMEN

New results presented by Wang et al. showing the temperature dependence of the Y3Ga5O12:Ce3+ energy bandgap have been taken into account in the calculations of the changes of the energy distance between the lowest 5d state of Ce3+ and the edge of the conduction band. Our calculations show that the diminishing of the band gap energy with temperature has a negligible effect on the difference between the energy of the conduction band and the localized states of the 5d configuration of Ce3+, which means that the new experimental results do not undermine the validity of the conclusions of our previous paper.

8.
Phys Chem Chem Phys ; 21(5): 2818-2820, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30664134

RESUMEN

New results presented by Wang et al. showing the temperature dependence of the Y3Ga5O12:Ce3+ energy bandgap have been taken into account in the calculations of the changes of the energy distance between the lowest 5d state of Ce3+ and the edge of the conduction band. Our calculations show that the diminishing of the band gap energy with temperature has a negligible effect on the difference between the energy of the conduction band and the localized states of the 5d configuration of Ce3+, which means that the new experimental results do not undermine the validity of the conclusions of our previous paper.

9.
Phys Chem Chem Phys ; 21(45): 25108-25117, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31691694

RESUMEN

Phosphors that emit in the deep-red spectral region are critical for plant cultivation light-emitting diodes. Herein, ultrabroadband deep-red luminescence of Mn4+ in La4Ti3O12 was studied, which showed intense zero phonon line emission. The double-perovskite structural La4Ti3O12 simultaneously contains two Ti4+ sites forming slightly- and highly-distorted TiO6 octahedra, respectively. The influence of octahedral distortion on the Mn4+ emission energy in the two distinct Ti4+ sites was studied both experimentally and theoretically. The spectral measurements indicated that Mn4+ in La4Ti3O12 showed intense zero phonon line emission (ZPL) at deep-red 710-740 nm under excitation of 400 nm charging the O2-→ Mn4+ charge transfer transition. The splitting of the ZPL of the Mn4+ 2Eg→4A2g transition as well as the intensity of ZPL relative to the vibronic phonon sideband emissions were found to be greatly influenced by the degree of octahedral distortion. The crystal-field strength and Racah parameters of Mn4+ in each Ti4+ site were also estimated. The Mn4+ 2Eg→4A2g luminescence exhibited severe thermal quenching, which was explained by the low-lying 4T2g level and charge-transfer state.

10.
Inorg Chem ; 57(9): 5194-5203, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29676568

RESUMEN

Persistent luminescence (PersL) imaging without real-time external excitation has been regarded as the next generation of autofluorescence-free optical imaging technology. However, to achieve improved imaging resolution and deep tissue penetration, developing new near-infrared (NIR) persistent phosphors with intense and long duration PersL over 1000 nm is still a challenging but urgent task in this field. Herein, making use of the persistent energy transfer process from Cr3+ to Er3+, we report a novel garnet persistent phosphor of Y3Al2Ga3O12 codoped with Er3+ and Cr3+ (YAG G:Er-Cr), which shows intense Cr3+ PersL (∼690 nm) in the deep red region matching well with the first biological window (NIR-I, 650-950 nm) and Er3+ PersL (∼1532 nm) in the NIR region matching well with the third biological window (NIR-III, 1500-1800 nm). The optical imaging through raw-pork tissues (thickness of 1 cm) suggests that the emission band of Er3+ can achieve higher spatial resolution and more accurate signal location than that of Cr3+ due to the reduced light scattering at longer wavelengths. Furthermore, by utilizing two independent electron traps with two different trap depths in YAG G:Er-Cr, the Cr3+/Er3+ PersL can even be recharged in situ by photostimulation with 660 nm LED thanks to the redistribution of trapped electrons from the deep trap to the shallow one. Our results serve as a guide in developing promising NIR (>1000 nm) persistent phosphors for long-term optical imaging.


Asunto(s)
Electrones , Luminiscencia , Imagen Óptica , Cromo/química , Transferencia de Energía , Erbio/química , Galio/química , Rayos Infrarrojos
11.
Phys Chem Chem Phys ; 20(27): 18380-18390, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29943777

RESUMEN

In this work we present the results of photocurrent excitation spectroscopy (PCE) of Gd3Al2Ga3O12:Ce3+ (GAGG:Ce3+) and Gd3Ga5O12:Ce3+ (GGG:Ce3+) performed at temperatures ranging from 100 to 500 K supplemented by spectroscopic measurements (steady state and time resolved photoluminescence spectroscopy) performed at temperatures ranging from 10 to 500 K and at high pressure up to 300 kbar. The PCE spectra contain bands related to transitions from the ground state 2F5/2 of the 4f1 electronic configuration to the crystal field split states related to the 5d1 electronic configuration of Ce3+. This implicates the presence of the autoionization process - transfer of electrons from the localized, excited states of Ce3+ to the conduction band (CB), directly linked to luminescence quenching of Ce3+. The mechanism of autoionization of GAGG:Ce3+ and GGG:Ce3+ was determined to be different on the grounds of differences in temperature dependence of photocurrent intensity. The latter system exhibits autoionization, which occurs when all of the 5d excited states are degenerated with the CB, whereas in the former system, the autoionization process is thermally assisted with an activation energy barrier (distance to the edge of the CB) of approximately 1600 cm-1. In GGG:Ce3+ the degeneracy of 5d1 states of Ce3+ was lifted by application of high pressure, shifting the edge of the CB up and exposing Ce3+ luminescence at 20 kbar. Further spectroscopic analyses of the pressure-temperature dependence of the luminescence decay time as well as the temperature dependence of photocurrent intensity of GGG:Ce3+ have independently shown existence of a luminescence quenching state located approximately 600 cm-1 below the CB, attributed to the impurity trapped exciton.

12.
Inorg Chem ; 56(17): 10353-10360, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28832131

RESUMEN

Orange persistent phosphors of Ca3Si2O7 (CSO) doped with Eu2+ were strategically developed by codoping Sm3+ or Tm3+. First, a vacuum referred binding energy, VRBE, diagram of Ca3Si2O7 (CSO) was constructed from the measured spectroscopic data. By the zigzag curve of the divalent lanthanide ions in the VRBE diagram, Sm3+ and Tm3+ ions were predicted to be a suitable electron trap for the persistent luminescence. The initial persistent luminance of CSO:Eu2+-Sm3+ and CSO:Eu2+-Tm3+ was found to be 290 times and 9300 times stronger, respectively, compared with CSO:Eu2+. By optimizing Eu2+ and Tm3+ concentrations, the persistent luminescence duration on 0.32 mcd/m2 reached approximately 50 min in CSO:Eu2+-Tm3+. From the VRBE diagram and the persistent luminescence properties, we discuss the persistent mechanism including the charging process, detrapping process, and electron trapping centers.

13.
Inorg Chem ; 55(22): 11890-11897, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27802023

RESUMEN

We investigated the effect of trivalent lanthanide substitution on a novel oxynitride persistent phosphor SrSi2AlO2N3:Eu2+,Ln3+, which shows green persistent luminescence for more than 2 h. First, an energy level diagram by using the host-referred binding energy (HRBE) scheme was constructed. The location of the energy levels of all divalent and trivalent lanthanides referred to the energy band of the host SrSi2AlO2N3 was estimated. Then, thermoluminescence (TL) measurements in the target persistent phosphors were performed to obtain direct experimental results on the trap depth. We found that the trap levels based on the TL measurements coincided well with the 4f ground states of divalent lanthanide codopants in SrSi2AlO2N3:Eu2+,Ln3+. The result strongly suggests the effective traps for persistent luminescence in SrSi2AlO2N3:Eu2+,Ln3+ could be due to the aliovalent substitution of Ln3+ for Sr2+, which can be controlled by selecting suitable codopant Ln3+. The work shows the HRBE scheme may offer a way to understand the nature of defects in the persistent phosphor as well as a possible guideline to design new persistent phosphors with required trap depths.

14.
Dalton Trans ; 53(19): 8069-8092, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38686957

RESUMEN

Trivalent europium (Eu3+) ions show red luminescence with sharp spectral lines owing to the intraconfigurational 4f-4f transitions. Because of their characteristic luminescence properties, various Eu3+-doped inorganic compounds have been developed to meet the demands of optoelectronic devices. Regardless of shielding by the outer 5s and 5p orbitals, the properties of the Eu3+:4f-4f transition depend on the local environment, such as the shapes of the coordination polyhedra, site symmetry, nephelauxetic effects, crystal field effects, and bonding character. Mixed-anion coordination, where multiple types of anions surround a single Eu3+ ion, can directly affect the optical properties of Eu3+. We review the luminescence properties of Eu3+ ions in mixed-anion compounds of the oxynitride YSiO2N and oxyhalides YOX (X = Cl or Br). Oxynitride and oxyhalide coordination results in characteristic transition probabilities and branching ratios of the 5D0 → 7F0-6 transitions due to distorted structural environments and red-shifted charge transfer excitation bands due to an upward shift of the valence band. The expected and experimentally observed features of Eu3+ luminescence in mixed-anion compounds are outlined based on band and Judd-Ofelt theories. Future applications of the intense red luminescence at ∼620 nm under near-ultraviolet light illumination in Eu3+-doped mixed-anion compounds are introduced, and material design guidelines for new functional Eu3+-doped phosphors are presented.

15.
Adv Mater ; : e2401000, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773688

RESUMEN

Visible light is a universal and user-friendly excitation source; however, its use to generate persistent luminescence (PersL) in materials remains a huge challenge. Herein, the concept of intermolecular charge transfer (xCT) is applied in typical host-guest molecular systems, which allows for a much lower energy requirement for charge separation, thus enabling efficient charging of near-infrared (NIR) PersL in organics by visible light (425-700 nm). Importantly, NIR PersL in organics occurs via the trapping of electrons from charge-transfer aggregates (CTAs) into constructed trap states with trap depths of 0.63-1.17 eV, followed by the detrapping of these electrons by thermal stimulation, resulting in a unique light-storage effect and long-lasting emission up to 4.6 h at room temperature. The xCT absorption range is modulated by changing the electron-donating ability of a series of acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrile-based CTAs, and the organic PersL is tuned from 681 to 722 nm. This study on xCT interaction-induced NIR PersL in organic materials provides a major step forward in understanding the underlying luminescence mechanism of organic semiconductors and these findings are expected to promote their applications in optoelectronics, energy storage, and medical diagnosis.

16.
Water Res ; 243: 120412, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37523924

RESUMEN

Passive sampling is a technique for monitoring orthophosphate (PO4-P) in the water environment. Compared with traditional grab sampling followed by PO4-P quantification, kinetic-type passive samplers such as Chemcatcher® express representative concentrations of PO4-P as time-weighted average concentrations (CTWA). They can also potentially evaluate much lower PO4-P concentrations, but the available receiving phases of Chemcatcher® used for PO4-P were extremely limited. We developed a new receiving phase, the PSfZS sheet, comprising a zirconium sulfate-surfactant micelle mesostructure and polysulfone matrix. We examined its performance in terms of PO4-P sorption characteristics, PO4-P selectivity, and PO4-P sampling rate (Rs). Its capacity was adequate (12.0 µg-P/cm2) and selectivity for PO4-P uptake was good. The Rs for PO4-P increased with increasing water temperature (8.1-29.1 °C) and decreasing pH (4.1-9.7) in a laboratory calibration, and ranged from 5.27 × 10-2 L/d to 1.66 × 10-1 L/d. We placed the samplers in a municipal wastewater treatment plant, a shallow eutrophic lake, and an oligotrophic caldera lake. The Rs in the deployment sites was calibrated by monitored water temperature and pH. The estimated CTWA of PO4-P in the municipal wastewater treatment plant was similar to the averaged concentration of soluble reactive phosphorus determined by multiple grab samplings. In the lake deployments, we found that the new sampler can quantify CTWA values of PO4-P below 10 µg/L, and thus it provides more technical monitoring options and contributes to the conservation and management of the water environment.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Agua/química , Calibración , Temperatura , Fósforo , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
17.
Materials (Basel) ; 15(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268905

RESUMEN

Glass matrix embedding is an efficient way to improve the chemical and thermal stability of the halide perovskite QDs. However, CsPbX3 QDs exhibit distinct optical properties in different glass matrixes, including photoluminescence (PL) peak position, PL peak width, and optical band gap. In this work, the temperature-dependent PL spectra, absorption spectra, high-energy X-ray structure factor S(Q), and pair distribution function (PDF) were integrated to analyze the structural evolution of CsPbBr3 QDs in different glass matrixes. The results show that the lattice parameters and atomic spacing of CsPbBr3 QDs are affected by the glass composition in which they are embedded. The most possibility can be attributed to the thermal expansion mismatch between CsPbBr3 QDs and the glass matrix. The results may provide a new way to understand the effect of the glass composition on the optical properties of CsPbBr3 QDs in a glass matrix.

18.
J Phys Chem Lett ; 13(33): 7809-7815, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35975956

RESUMEN

Mixed-halide perovskites have attracted great attention in applications of lighting and photovoltaic devices due to their excellent properties. Understanding the phase segregation mechanism of mixed-halide perovskite has significance for suppressing the performance degradation of optoelectronic devices. Herein, we investigate the mixed-halide perovskite nanocrystals (NCs) in isolation from the external factors (oxygen, moisture, and pressure) using glass encapsulation, which shows excellent photostability against phase segregation. By monitoring the structural evolution of the NCs in glass matrices, the coexisting phase segregation and amorphization of mixed-halide perovskites are observed in real-time. The results show that thermal-induced local temperature increase plays a dominant role in the phase segregation of mixed-halide perovskite NCs. The recovery process is driven by the spontaneous crystallization of the amorphous mixed-halide phase. The clarified dynamic equilibrium process between the compositional segregation (mixing) and structural disorder (order) gives us a better insight into the reversible phase segregation mechanism of mixed-halide perovskite.

19.
Dalton Trans ; 50(24): 8385-8391, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34037036

RESUMEN

The high-pressure structures of alkaline earth metal hydride-fluorides (AHFs) (A = Ca, Sr, Ba) were investigated up to 8 GPa. While AHF adopts the fluorite-type structure (Fm3[combining macron]m) at ambient pressure without anion ordering, the PbCl2-type (cotunnite-type) structure (Pnma) is formed by pressurization, with a declining trend of critical pressure as the ionic radius of the A2+ cation increases. In contrast to PbCl2-type LaHO and LaOF whose anions are fully ordered, the H-/F- anions in the high-pressure polymorph of SrHF and BaHF are partially ordered, with a preferential occupation of H- at the square-pyramidal site (vs. tetrahedral site). First-principles calculations partially support the preferential anion occupation and suggest occupation switching at higher pressure. These results provide a strategy for controlling the anion ordering and local structure in mixed-anion compounds.

20.
ACS Appl Mater Interfaces ; 12(34): 38325-38332, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32846490

RESUMEN

Luminescence Boltzmann thermometry is one of the most reliable techniques used to locally probe temperature in a contactless mode. However, to date, there is no report on cryogenic thermometers based on the highly sensitive and reliable Boltzmann-based 4T2 → 4A2/2E → 4A2 emission ratio of Cr3+. On the basis of structural information of the local HfO6 octahedral site we demonstrated the potential of the CaHfO3:Cr3+ system by combining deep theoretical and experimental investigation. The material exhibits simultaneous emission from both the 2E and 4T2 excited states, following the Boltzmann law in a cryogenic temperature range of 40-150 K. The promising thermometric performance corroborates the potential of CaHfO3:Cr3+ as a Boltzmann cryothermometer, being characterized by a high relative sensitivity (∼ 2%·K-1 at 40 K) and exceptional thermal resolution (0.045-0.77 K in the 40-150 K range). Moreover, by exploiting the flexibility of the 4T2-2E energy gap controlled by the crystal field of the local octahedral site, the design proposed herein could be expanded to develop new Cr3+-doped cryogenic thermometers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA