RESUMEN
BACKGROUND: Kefir is a complex microbial community that plays a critical role in the fermentation and production of bioactive peptides, and has health-improving properties. The composition of kefir can vary by geographic localization and weather, and this paper focuses on a Brazilian sample and continues previous work that has successful anti-Alzheimer properties. In this study, we employed shotgun metagenomics and peptidomics approaches to characterize Brazilian kefir further. RESULTS: We successfully assembled the novel genome of Lactobacillus kefiranofaciens (LkefirU) and conducted a comprehensive pangenome analysis to compare it with other strains. Furthermore, we performed a peptidome analysis, revealing the presence of bioactive peptides encrypted by L. kefiranofaciens in the Brazilian kefir sample, and utilized in silico prospecting and molecular docking techniques to identify potential anti-Alzheimer peptides, targeting ß-amyloid (fibril and plaque), BACE, and acetylcholinesterase. Through this analysis, we identified two peptides that show promise as compounds with anti-Alzheimer properties. CONCLUSIONS: These findings not only provide insights into the genome of L. kefiranofaciens but also serve as a promising prototype for the development of novel anti-Alzheimer compounds derived from Brazilian kefir.
Asunto(s)
Enfermedad de Alzheimer , Genoma Bacteriano , Kéfir , Lactobacillus , Microbiota , Péptidos , Kéfir/microbiología , Lactobacillus/genética , Brasil , Péptidos/química , Péptidos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Metagenómica/métodosRESUMEN
BACKGROUND: The discovery of new molecules with antimicrobial properties has been a promising approach, mainly when related to substances produced by bacteria. The use of substances produced by bees has evidenced the antimicrobial action in different types of organisms. Thus, the use of bacteria isolated from larval food of stingless bees opens the way for the identification of the new molecules. The effect of supernatants produced by these bacteria was evaluated for their ability to inhibit the growth of bacteria of clinical interest. Furthermore, their effects were evaluated when used in synergy with antibiotics available in the pharmaceutical industry. RESULTS: A few supernatants showed an inhibitory effect against susceptible and multiresistant strains in the PIC assay and the modulation assay. Emphasizing the inhibitory effect on multidrug-resistant strains, 7 showed an effect on multidrug-resistant Escherichia coli (APEC), Klebsiella pneumoniae carbapenemase (KPC), multidrug-resistant Pseudomonas aeruginosa, and multidrug-resistant Staphylococcus aureus (MRSA) in the PIC assay. Of the supernatants analyzed, some presented synergism for more than one species of multidrug-resistant bacteria. Nine had a synergistic effect with ampicillin on E. coli (APEC) or S. aureus (MRSA), 5 with penicillin G on E. coli (APEC) or KPC, and 3 with vancomycin on KPC. CONCLUSION: In summary, the results indicate that supernatants produced from microorganisms can synthesize different classes of molecules with potent antibiotic activity against multiresistant bacteria. Thus, suggesting the use of these microorganisms for use clinical tests to isolate the molecules produced and their potential for use.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Ampicilina/farmacología , Animales , Antibacterianos/farmacología , Bacterias , Abejas , Brasil , Escherichia coli , Klebsiella pneumoniae , Larva , Pruebas de Sensibilidad MicrobianaRESUMEN
Benzophenone-3, fipronil and propylparaben are micropollutants that are potential threats to ecosystems and have been detected in aquatic environments. However, studies involving the investigation of new technologies aiming at their elimination from these matrices, such as advanced oxidation processes, remain scarce. In this study, different iron complexes (FeCit, FeEDTA, FeEDDS and FeNTA) were evaluated for the degradation of a mixture of these micropollutants (100 µg L−1 each) spiked in municipal wastewater treatment plant (MWWTP) effluent at pH 6.9 by solar photo-Fenton. Operational parameters (iron and H2O2 concentration and Fe/L molar ratio) were optimized for each complex. Degradation efficiencies improved significantly by increasing the concentration of iron complexes (1:1 Fe/L) from 12.5 to 100 µmol L−1 for FeEDDS, FeEDTA and FeNTA. The maximum degradation reached with FeCit for all iron concentrations was limited to 30%. Different Fe/L molar ratios were required to maximize the degradation efficiency for each ligand: 1:1 for FeNTA and FeEDTA, 1:3 for FeEDDS and 1:5 for FeCit. Considering the best Fe/L molar ratios, higher degradation rates were reached using 5.9 mmol L−1 H2O2 for FeNTA and FeEDTA compared to 1.5 and 2.9 mmol L−1 H2O2 for FeEDDS and FeCit, respectively. Acute toxicity to Canton S. strain D. melanogaster flies reduced significantly after treatment for all iron complexes, indicating the formation of low-toxicity by-products. FeNTA was considered the best iron complex source in terms of the kinetic constant (0.10 > 0.063 > 0.051 > 0.036 min−1 for FeCit, FeNTA, FeEDTA and FeEDDS, respectively), organic carbon input and cost-benefit (USD 327 m−3 > USD 20 m−3 > USD 16 m−3 > USD 13 m−3 for FeEDDS, FeCit, FeEDTA and FeNTA, respectively) when compared to the other tested complexes.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Animales , Drosophila melanogaster , Ecosistema , Peróxido de Hidrógeno/química , Hierro/química , Oxidación-Reducción , Aguas Residuales , Contaminantes Químicos del Agua/químicaRESUMEN
Epoxyeicosatrienoic acids (EET) and related epoxy fatty acids (EpFA) are endogenous anti-inflammatory compounds, which are converted by the soluble epoxide hydrolase (sEH) to dihydroxylethersatrienoic acids (DHETs) with lessened biological effects. Inhibition of sEH is used as a strategy to increase EET levels leading to lower inflammation. Rheumatoid arthritis is a chronic autoimmune disease that leads to destruction of joint tissues. This pathogenesis involves a complex interplay between the immune system, and environmental factors. Here, we investigate the effects of inhibiting sEH with 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) on a collagen-induced arthritis model. The treatment with TPPU ameliorates hyperalgesia, edema, and decreases the expression of important pro-inflammatory cytokines of Th1 and Th17 profiles, while increasing Treg cells. Considering the challenges to control RA, this study provides robust data supporting that inhibition of the sEH is a promising target to treat arthritis.
Asunto(s)
Artritis Experimental/inmunología , Epóxido Hidrolasas/antagonistas & inhibidores , Inflamación/prevención & control , Compuestos de Fenilurea/farmacología , Piperidinas/farmacología , Linfocitos T Reguladores/inmunología , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Colágeno/toxicidad , Inflamación/etiología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos DBA , Linfocitos T Reguladores/efectos de los fármacosRESUMEN
Periodontal disease is an infectious inflammatory disease related to the destruction of supporting tissues of the teeth, leading to a functional loss of the teeth. Inflammatory molecules present in the exudate are catalyzed and form different metabolites that can be identified and quantified. Thus, we evaluated the inflammatory exudate present in crevicular fluid to identify metabolic biological markers for diagnosing chronic periodontal disease in older adults. Research participants were selected from long-term institutions in Brazil. Participants were individuals aged 65 years or older, healthy, or with chronic periodontal disease. Gas chromatography/mass spectrometry was used to evaluate potential biomarkers in 120 crevicular fluid samples. We identified 969 metabolites in the individuals. Of these, 15 metabolites showed a variable importance with projection score > 1 and were associated with periodontal disease. Further analysis showed that among the 15 metabolites, two (5-aminovaleric acid and serine, 3TMS derivative) were found at higher concentrations in the crevicular fluid, indicating their potential diagnostic power for periodontal disease in older adults. Our findings indicated that some metabolites are present at high concentrations in the crevicular fluid in older adults with periodontal disease and can be used as biomarkers of periodontal disease.
Asunto(s)
Periodontitis Crónica/metabolismo , Metabolómica/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores , Periodontitis Crónica/diagnóstico , Cromatografía de Gases y Espectrometría de Masas , Líquido del Surco Gingival/metabolismo , HumanosRESUMEN
The prostate development has an important postnatal period where cell proliferation begins at the first days after birth and is related to gland growth and ramification. Any metabolic and/or hormonal changes occurring during the postnatal period can interfere with prostate branching. Hyperglycemia is a common condition in low-weight preterm babies at neonatal period and also a disorder found in the offspring of obese mothers. Thus, this study aimed to investigate the in vitro effects of a glucose-rich environment during prostate postnatal development. Wistar rats prostate were removed at birth and cultured for 1, 2 and 3 days in DMEM under normal (5.5 mM) or elevated (7 and 25 mM) glucose concentrations. Samples were processed for morphological analysis, PCNA and smooth muscle α-actin immunohistochemistry, evaluation of active caspase-3, ERK1/2 and Wnt5a gene expression. High glucose concentrations reduced the number of prostatic buds and proliferating cells. The natural increase in smooth muscle cells and collagen deposition observed in control prostates during the first 3 days of development was reduced by elevated glucose concentrations. The amount of active caspase-3 was higher in prostates incubated at 7 mM and TGF-ß levels also increased sharply after both glucose concentrations. Additionally, high glucose environment decreased ERK 1/2 activation and increased Wnt5a expression. These data show that high levels of glucose during the first postnatal days affected prostate development by inhibiting cell proliferation which impairs bud branching and this was associated with anti-proliferative signals such as decreased ERK1/2 activation and increased Wnt5a expression.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/toxicidad , Próstata/patología , Transducción de Señal , Animales , Animales Recién Nacidos , Proliferación Celular , Técnicas In Vitro , Masculino , Próstata/efectos de los fármacos , Próstata/crecimiento & desarrollo , Próstata/metabolismo , Ratas , Ratas Wistar , Edulcorantes/toxicidadRESUMEN
This study presents the degradation of fipronil in sewage treatment plant (STP) effluent by photo-Fenton at near neutral pH (pH 6.0) using Fe3+/Citrate complex. 83% of fipronil degradation was reached using a molar iron/citrate ratio of 1:3 (192 µmol L-1 of Fe3+/576 µmol L-1 of citrate). Photo-Fenton reduced the toxicity of treated solutions as according to the survival of Drosophila melanogaster exposed to non-treated and treated samples. Control experiments performed in distilled water using 32 µmol L-1 of Fe3+/96 µmol L-1 of citrate achieved 98% of fipronil degradation within 100 kJ m-2 (UV-A radiation, k = 30 × 10-3 kJ-1 m2 and t1/2 = 23 kJ m-2), thus indicating that fipronil degradation is impaired by natural organic matter and inorganic ions present in STP effluent. Degradation was faster under solar radiation, as the same efficiency (98%) was obtained after 75 kJ m-2 (k = 63 × 10-3 kJ-1 m2 and t1/2 = 11 kJ m-2). In addition, pathways of fipronil degradation using Fe3+/Citrate under solar and UV-A radiation were investigated and transformation products proposed. Results revealed that the HO⢠attack occurred preferentially in the pyrazole ring. Eight transformation products were identified by UHPLC-Q-TOF-MS and four are unprecedented in the literature. Control experiments in distilled water demonstrated that toxicity reduction is related to fipronil degradation and that transformation products are less toxic than fipronil. Furthermore, toxicity of STP fortified with fipronil was reduced after photo-Fenton. These results demonstrate the feasibility of applying this process using Fe3+/Citrate complex for fipronil degradation in a real matrix.
Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Animales , Drosophila melanogaster , Compuestos Férricos , Oxidación-Reducción , PirazolesRESUMEN
BACKGROUND: The prognosis of human cancer depends on the deregulations of many molecular patterns. In recent years, a great interest in the intracellular signaling mechanisms related to nitric oxide (NO)-induced carcinogenesis has appeared, as one of the most preeminent prognostic markers for many types of neoplasms. In this study, we identify the levels of iNOS and nitrotyrosine in the sample of normal oral mucosa (NOM), oral leukoplakia (OL), and oral squamous cell carcinoma (OSCC). METHODS: Quantitative polymerase chain reactions (qPCRs) were utilized to detect the NOS2 levels in fresh-frozen tissue samples of NOM (n = 6), OL (n = 20), and OSCC (n = 15). Moreover, the immunohistochemical method was used to examine the levels of iNOS and nitrotyrosine in 85 cases of OSCC (39 cases without metastases and 46 with metastases), 42 cases of OL, and 16 cases of NOM. RESULTS: There are rising tendencies in the iNOS mRNA and protein levels during human oral carcinogenesis. Similar findings were obtained in the nitrotyrosine staining. Furthermore, iNOS and nitrotyrosine immunostaining are associated with several clinical-pathological features of OSCC (site, presence of metastasis, staging, recidivism, and survival). CONCLUSIONS: The NO-signaling pathway plays a vital role in the development and progression of human oral dysplastic and neoplastic diseases. Nitrotyrosine was a significant marker for the discrimination of OSCC prognosis and survival.
Asunto(s)
Carcinoma de Células Escamosas/diagnóstico , Neoplasias de la Boca/diagnóstico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Tirosina/análogos & derivados , Humanos , Leucoplasia Bucal , Óxido Nítrico/metabolismo , Pronóstico , Transducción de Señal , Tirosina/metabolismoRESUMEN
Snake venoms are complex mixtures mainly composed of proteins and small peptides. Crotoxin is one of the most studied components from Crotalus venoms, but many other components are less known due to their low abundance. The venome of Crotalus durissus terrificus, the most lethal Brazilian snake, was investigated by combining its venom gland transcriptome and proteome to create a holistic database of venom compounds unraveling novel toxins. We constructed a cDNA library from C. d. terrificus venom gland using the Illumina platform and investigated its venom proteome through high resolution liquid chromotography-tandem mass spectrometry. After integrating data from both data sets, more than 30 venom components classes were identified by the transcriptomic analysis and 15 of them were detected in the venom proteome. However, few of them (PLA2, SVMP, SVSP, and VEGF) were relatively abundant. Furthermore, only seven expressed transcripts contributed to â¼82% and â¼73% of the abundance in the transcriptome and proteome, respectively. Additionally, novel venom proteins are reported, and we highlight the importance of using different databases to perform the data integration and discuss the structure of the venom components-related transcripts identified. Concluding, this research paves the way for novel investigations and discovery of future pharmacological agents or targets in the antivenom therapy.
Asunto(s)
Venenos de Crotálidos/química , Crotalus/fisiología , Proteoma/aislamiento & purificación , Transcriptoma , Secuencia de Aminoácidos , Animales , Carboxipeptidasas/genética , Carboxipeptidasas/aislamiento & purificación , Carboxipeptidasas/metabolismo , Cromatografía Liquida/métodos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/aislamiento & purificación , Factores de Crecimiento de Fibroblastos/metabolismo , Expresión Génica , Biblioteca de Genes , Ontología de Genes , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/aislamiento & purificación , Hialuronoglucosaminidasa/metabolismo , Anotación de Secuencia Molecular , Proteoma/genética , Proteoma/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem/métodosRESUMEN
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid derived from the cytochrome P450 enzymes, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties, and inhibition of sEH might provide protective effects against inflammatory bone loss. Thus, in the present study, we tested the selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in a mouse model of periodontitis induced by infection with Aggregatibacter actinomycetemcomitans Oral treatment of wild-type mice with TPPU and sEH knockout (KO) animals showed reduced bone loss induced by A. actinomycetemcomitans This was associated with decreased expression of key osteoclastogenic molecules, receptor activator of nuclear factor-κB/RANK ligand/osteoprotegerin, and the chemokine monocyte chemotactic protein 1 in the gingival tissue without affecting bacterial counts. In addition, downstream kinases p38 and c-Jun N-terminal kinase known to be activated in response to inflammatory signals were abrogated after TPPU treatment or in sEH KO mice. Moreover, endoplasmic reticulum stress was elevated in periodontal disease but was abrogated after TPPU treatment and in sEH knockout mice. Together, these results demonstrated that sEH pharmacological inhibition may be of therapeutic value in periodontitis.
Asunto(s)
Pérdida de Hueso Alveolar/metabolismo , Apoptosis/fisiología , Estrés del Retículo Endoplásmico/fisiología , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inflamación/diagnóstico por imagen , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodontitis/diagnóstico por imagen , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Piperidinas/farmacología , Piperidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
BACKGROUND: Antimicrobial peptides (AMPs) are the first line of host immune defense against pathogens. Among AMPs from the honeybee Apis mellifera, abaecin is a major broad-spectrum antibacterial proline-enriched cationic peptide. RESULTS: For heterologous expression of abaecin in Pichia pastoris, we designed an ORF with HisTag, and the codon usage was optimized. The gene was chemically synthetized and cloned in the pUC57 vector. The new ORF was sub-cloned in the pPIC9 expression vector and transformed into P. pastoris. After selection of positive clones, the expression was induced by methanol. The supernatant was analyzed at different times to determine the optimal time for the recombinant peptide expression. As a proof-of-concept, Escherichia coli was co-incubated with the recombinant peptide to verify its antimicrobial potential. DISCUSSION: Briefly, the recombinant Abaecin (rAbaecin) has efficiently decreased E. coli growth (P < 0.05) through an in vitro assay, and may be considered as a novel therapeutic agent that may complement other conventional antibiotic therapies.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/genética , Expresión Génica , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/genética , Pichia/genética , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Abejas , Clonación Molecular , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Proteínas de Insectos/metabolismo , Proteínas de Insectos/farmacología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacologíaRESUMEN
Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.
RESUMEN
BACKGROUND: Tumor initiation presents a complex and unstable genomic landscape; one of the earliest hallmark events of cancer, and its progression is probably based on selection mechanisms under specific environments that lead to functional tumor cell speciation. We hypothesized that viable tumor phenotypes possess common and highly stable karyotypes and their proliferation is facilitated by an attuned high telomerase activity. Very few investigations have focused on the evolution of common chromosomal rearrangements associated to molecular events that result in functional phenotypes during tumor development. RESULTS: We have used cytogenetic, flow cytometry and cell culture tools to investigate chromosomal rearrangements and clonality during cancer development using the murine sarcoma TG180 model, and also molecular biology techniques to establish a correlation between chromosome instability and telomerase activity, since telomeres are highly affected during cancer evolution. Cytogenetic analysis showed a near-tetraploid karyotype originated by endoreduplication. Chromosomal rearrangements were random events in response to in vitro conditions, but a stable karyotypic equilibrium was achieved during tumor progression in different in vivo conditions, suggesting that a specific microenvironment may stabilize the chromosomal number and architecture. Specific chromosome aberrations (marker chromosomes) and activated regions (rDNAs) were ubiquitous in the karyotype, suggesting that the conservation of these patterns may be advantageous for tumor progression. High telomerase expression was also correlated with the chromosomal rearrangements stabilization. CONCLUSIONS: Our data reinforce the notion that the sarcoma cell evolution converges from a highly unstable karyotype to relatively stable and functional chromosome rearrangements, which are further enabled by telomerase overexpression.
Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Sarcoma , Telomerasa/biosíntesis , Translocación Genética , Animales , Línea Celular Tumoral , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/genética , Sarcoma/enzimología , Sarcoma/genética , Sarcoma/patología , Telomerasa/genéticaRESUMEN
The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito's main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, "plus-C" odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito.
Asunto(s)
Culex/genética , Receptores Odorantes/genética , Olfato/genética , Monoterpenos Acíclicos , Aldehídos , Animales , Antenas de Artrópodos/metabolismo , Secuencia de Bases , Clonación Molecular , Culex/metabolismo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Monoterpenos , Isoformas de Proteínas/genética , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
With the advent of genomic sequences and next-generation sequencing technologies (RNA-Seq), multiple repertoires of olfactory proteins in various insect species are being unraveled. However, functional analyses are lagging behind due in part to the lack of simple and reliable methods for heterologous expression of odorant receptors (ORs). While the Xenopus oocyte recording system fulfills some of this lacuna, this system is devoid of other olfactory proteins, thus testing only the "naked" ORs. Recently, a moth OR was expressed in the majority of neurons in the antennae of the fruit fly using Orco-GAL4 to drive expression of the moth OR. Electroantennogram (EAG) was used to de-orphanize the moth OR, but generic application of this approach was brought to question. Here, we describe that this system works with ORs not only from taxonomically distant insect species (moth), but also closely related species (mosquito), even when the fruit fly has highly sensitive innate ORs for the odorant being tested. We demonstrate that Orco-GAL4 flies expressing the silkworm pheromone receptor, BmorOR1, showed significantly higher responses to the sex pheromone bombykol than the control lines used to drive expression. Additionally, we show that flies expressing an OR from the Southern house mosquito, CquiOR2, gave significantly stronger responses to the cognate odorants indole and 2-methylphenol than the "background noise" recorder from control lines. In summary, we validate the use of Orco-GAL4 driven UAS-OR lines along with EAG analysis as a simple alternative for de-orphanization and functional studies of insect ORs in an intact olfactory system.
Asunto(s)
Drosophila/genética , Drosophila/fisiología , Proteínas de Insectos/genética , Receptores Odorantes/genética , Transgenes , Animales , Antenas de Artrópodos/fisiología , Bombyx/genética , Bombyx/fisiología , Culex/genética , Culex/fisiología , Femenino , Expresión Génica , Proteínas de Insectos/metabolismo , Masculino , Feromonas/metabolismo , Receptores Odorantes/metabolismo , Spodoptera/genética , Spodoptera/fisiologíaRESUMEN
Alzheimer's disease (AD) is considered the leading cause of dementia in the elderly worldwide. It results in progressive memory loss and impairment of cognitive and motor skills, leading to a high degree of disability and dependence. The development of AD is associated with the accumulation of senile plaques in the brain, caused by the amyloidogenic pathway of the disease. Several genetic and biochemical events are linked to AD development, with oxidative stress being one of them. Due to the scarcity of drugs aimed at treating AD, antioxidant compounds are increasingly studied as therapeutic targets for the disease. In this study, we investigate the antioxidant and anti-Alzheimer potential of the Tetragonisca angustula (Jataí) pollen extract in a Drosophila melanogaster Alzheimer's model. For this purpose, we utilized a D. melanogaster AD-like model, which expresses genes related to the amyloidogenic pathway of Alzheimer's disease. We explored the floral origin of the collected pollen, conducted phytochemical prospecting, and evaluated its antioxidant capacity in vitro. In vivo experiments involved assessing the survival and climbing ability of the D. melanogaster AD-like model with various concentrations of the pollen extract. Our findings revealed that the pollen extract of Tetragonisca angustula exhibits a significant antioxidant response and high concentrations of important phytochemicals, such as flavonoids and polyphenols. Furthermore, it enhanced the survival rate of D. melanogaster, and across all concentrations tested, it improved the climbing ability of the flies after 15 days of treatment with methanolic pollen extract. Additionally, the pollen extract reduced the neurodegeneration index in histopathological analysis. Thus, our study demonstrates the potential of Tetragonisca angustula pollen as an important subject for further investigation, aiming to isolate molecules that could potentially serve as therapeutic targets for Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Antioxidantes , Humanos , Abejas , Animales , Anciano , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Drosophila melanogaster , Polen/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
This study explores the green synthesis of silver nanoparticles (AgNPs) using a methanolic extract of fermented pollen from Tetragonisca angustula, a species of stingless bees. The AgNPs exhibit spherical morphology, low charge values, and suspension stability, with their unique composition attributed to elements from the pollen extract. Antioxidant assays show comparable activity between the pollen extract and AgNPs, emphasizing the retention of antioxidant effects. The synthesized AgNPs demonstrate antimicrobial activity against multidrug-resistant bacteria, highlighting their potential in combating bacterial resistance. The AgNPs exhibit no toxic effects on Drosophila melanogaster and even enhance the hatching rate of eggs. The study underscores the innovative use of stingless bee pollen extract in green synthesis, offering insights into the varied applications of AgNPs in biomedicine.
RESUMEN
Alzheimer's disease (AD) is a progressive neurodegenerative condition and the primary form of dementia among elderly people. The amyloidogenic hypothesis is the main theory that explains this phenomenon and describes the extracellular accumulation of amyloid beta (Aß) peptides. Model organisms such as Drosophila melanogaster have been utilized to improve the understanding of this disease and its treatment. This study evaluated the effects of peptide and metabolic fractions of Brazilian kefir on a strain of D. melanogaster that expresses human Aß peptide 1-42 in the eye. The parameters assessed included ommatidial organization, vacuole area, retinal thickness, and Aß peptide quantification. The present study revealed that the fractions, particularly the peptidic fraction, significantly reduced the vacuole area and increased the retina thickness in treated flies, indicating an improvement in neurodegeneration phenotype. The peptidic fraction was also found to alter Aß aggregation dynamics, inhibiting Aß fibril formation, as revealed by dynamic light scattering. This study demonstrated that kefir fractions, particularly the peptidic fraction < 10 kDa, have the potential to regulate Aß aggregation and alleviate neurodegeneration in a Drosophila melanogaster AD-like model. These findings suggest that kefir fractions could be viable for the bioprospection of novel drug prototypes for AD treatment, providing valuable insights into strategies targeting Aß aggregation and neurodegeneration in AD.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Drosophila melanogaster , Kéfir , Animales , Drosophila melanogaster/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Brasil , Humanos , Fenotipo , Fragmentos de Péptidos/metabolismoRESUMEN
The insect fat body is a multifunctional organ analogous to the vertebrate liver. The fat body is involved in the metabolism of juvenile hormone, regulation of environmental stress, production of immunity regulator-like proteins in cells and protein storage. However, very little is known about the molecular mechanisms involved in fat body physiology in stingless bees. In this study, we analyzed the transcriptome of the fat body from the stingless bee Melipona scutellaris. In silico analysis of a set of cDNA library sequences yielded 1728 expressed sequence tags (ESTs) and 997 high-quality sequences that were assembled into 29 contigs and 117 singlets. The BLAST X tool showed that 86% of the ESTs shared similarity with Apis mellifera (honeybee) genes. The M. scutellaris fat body ESTs encoded proteins with roles in numerous physiological processes, including anti-oxidation, phosphorylation, metabolism, detoxification, transmembrane transport, intracellular transport, cell proliferation, protein hydrolysis and protein synthesis. This is the first report to describe a transcriptomic analysis of specific organs of M. scutellaris. Our findings provide new insights into the physiological role of the fat body in stingless bees.
RESUMEN
Malaria is a neglected parasitic infection of global importance. It is mainly present in tropical countries and caused by a protozoa that belongs to the genus Plasmodium. The disease vectors are female Anopheles mosquitoes infected with the Plasmodium spp. According to the World Health Organization (WHO), there were 241 million malaria cases worldwide in 2020 and approximately 627 thousand malaria deaths in the same year. The increasing resistance to treatment has been a major problem since the beginning of the 21st century. New studies have been conducted to find possible drugs that can be used for the eradication of the disease. In this scenario, a protein named N-myristoyltransferase (NMT) has been studied as a potential drug target. NMT has an important role on the myristoylation of proteins and binds to the plasma membrane, contributing to the stabilization of protein-protein interactions. Thus, inhibition of NMT can lead to death of the parasite cell. Therefore, in order to predict and detect potential inhibitors against Plasmodium NMT, Computer-Aided Drug Design techniques were used in this research that involve virtual screening, molecular docking, and molecular dynamics. Three potential compounds similar to a benzofuran inhibitor were identified as stable PvNMT ligands. These compounds (EXP90, ZBC205 and ZDD968) originate from three different sources, respectively: a commercial library, a natural product library, and the FDA approved drugs dataset. These compounds may be further tested in in vitro and in vivo inhibition tests against Plasmodium vivax NMT.Communicated by Ramaswamy H. Sarma.