Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 174(6): 1571-1585.e11, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193114

RESUMEN

Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.


Asunto(s)
Relojes Circadianos/fisiología , Metaboloma , Animales , Dieta Alta en Grasa , Metabolismo Energético , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Metabolómica , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Corteza Prefrontal/metabolismo , Núcleo Supraquiasmático/metabolismo , Proteína Desacopladora 1/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(10): e2200083119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238641

RESUMEN

SignificanceWhile increasing evidence associates the disruption of circadian rhythms with pathologic conditions, including obesity, type 2 diabetes, and nonalcoholic fatty liver diseases (NAFLD), the involved mechanisms are still poorly described. Here, we show that, in both humans and mice, the pathogenesis of NAFLD is associated with the disruption of the circadian clock combined with perturbations of the growth hormone and sex hormone pathways. However, while this condition protects mice from the development of fibrosis and insulin resistance, it correlates with increased fibrosis in humans. This suggests that the perturbation of the circadian clock and its associated disruption of the growth hormone and sex hormone pathways are critical for the pathogenesis of metabolic and liver diseases.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/etiología , Factores de Transcripción ARNTL/genética , Animales , Dieta Alta en Grasa , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Leptina/genética , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética
3.
Cell ; 139(6): 1130-42, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005806

RESUMEN

In mammals, the transcription factor SRY, encoded by the Y chromosome, is normally responsible for triggering the indifferent gonads to develop as testes rather than ovaries. However, testis differentiation can occur in its absence. Here we demonstrate in the mouse that a single factor, the forkhead transcriptional regulator FOXL2, is required to prevent transdifferentiation of an adult ovary to a testis. Inducible deletion of Foxl2 in adult ovarian follicles leads to immediate upregulation of testis-specific genes including the critical SRY target gene Sox9. Concordantly, reprogramming of granulosa and theca cell lineages into Sertoli-like and Leydig-like cell lineages occurs with testosterone levels comparable to those of normal XY male littermates. Our results show that maintenance of the ovarian phenotype is an active process throughout life. They might also have important medical implications for the understanding and treatment of some disorders of sexual development in children and premature menopause in women.


Asunto(s)
Transdiferenciación Celular , Factores de Transcripción Forkhead/metabolismo , Ovario/metabolismo , Testículo/metabolismo , Animales , Femenino , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Células de la Granulosa/citología , Masculino , Ratones , Oocitos/metabolismo , Ovario/citología , Células de Sertoli/citología , Testículo/citología
4.
Cell Tissue Res ; 387(3): 415-431, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34698916

RESUMEN

Stroke is the leading cause of adult disability. Endogenous neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to the brain repair process. However, molecular mechanisms underlying CNS disease-induced SVZ NSPC-redirected migration to the lesion area are poorly understood. Here, we show that genetic depletion of the p75 neurotrophin receptor (p75NTR-/-) in mice reduced SVZ NSPC migration towards the lesion area after cortical injury and that p75NTR-/- NSPCs failed to migrate upon BDNF stimulation in vitro. Cortical injury rapidly increased p75NTR abundance in SVZ NSPCs via bone morphogenetic protein (BMP) receptor signaling. SVZ-derived p75NTR-/- NSPCs revealed an altered cytoskeletal network- and small GTPase family-related gene and protein expression. In accordance, BMP-treated non-migrating p75NTR-/- NSPCs revealed an altered morphology and α-tubulin expression compared to BMP-treated migrating wild-type NSPCs. We propose that BMP-induced p75NTR abundance in NSPCs is a regulator of SVZ NSPC migration to the lesion area via regulation of the cytoskeleton following cortical injury.


Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Animales , Ventrículos Laterales/metabolismo , Ratones , Neurogénesis , Receptor de Factor de Crecimiento Nervioso/metabolismo
5.
PLoS Biol ; 16(8): e2005886, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096135

RESUMEN

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos/fisiología , Músculo Esquelético/fisiología , Aminoácidos/metabolismo , Aminoácidos/fisiología , Animales , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Expresión Génica , Homeostasis , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo
6.
Mol Cell ; 49(1): 158-71, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23159735

RESUMEN

How the glucocorticoid receptor (GR) activates some genes while potently repressing others remains an open question. There are three current models for suppression: transrepression via GR tethering to AP-1/NF-κB sites, direct GR association with inhibitory elements (nGREs), and GR recruitment of the corepressor GRIP1. To gain insights into GR suppression, we used genomic analyses and genome-wide profiling of GR, p65, and c-Jun in LPS-stimulated macrophages. We show that GR mediates both activation and repression at tethered sites, GREs, and GRIP1-bound elements, indicating that motif classification is insufficient to predict regulatory polarity of GR binding. Interestingly, sites of GR repression utilize GRIP1's corepressor function and display reduced histone acetylation. Together, these findings suggest that while GR occupancy confers hormone responsiveness, the receptor itself may not participate in the regulatory effects. Furthermore, transcriptional outcome is not established by sequence but is influenced by epigenetic regulators, context, and other unrecognized regulatory determinants.


Asunto(s)
Epigénesis Genética , Genoma , Inflamación/genética , Receptores de Glucocorticoides/fisiología , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Mapeo Cromosómico , Análisis por Conglomerados , Secuencia de Consenso , Dexametasona/farmacología , Glucocorticoides/farmacología , Histonas/metabolismo , Inflamación/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Elementos de Respuesta , Factores de Transcripción/genética , Transcriptoma
7.
Development ; 144(21): 3917-3931, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939666

RESUMEN

During corticogenesis, distinct classes of neurons are born from progenitor cells located in the ventricular and subventricular zones, from where they migrate towards the pial surface to assemble into highly organized layer-specific circuits. However, the precise and coordinated transcriptional network activity defining neuronal identity is still not understood. Here, we show that genetic depletion of the basic helix-loop-helix (bHLH) transcription factor E2A splice variant E47 increased the number of Tbr1-positive deep layer and Satb2-positive upper layer neurons at E14.5, while depletion of the alternatively spliced E12 variant did not affect layer-specific neurogenesis. While ChIP-Seq identified a big overlap for E12- and E47-specific binding sites in embryonic NSCs, including sites at the cyclin-dependent kinase inhibitor (CDKI) Cdkn1c gene locus, RNA-Seq revealed a unique transcriptional regulation by each splice variant. E47 activated the expression of the CDKI Cdkn1c through binding to a distal enhancer. Finally, overexpression of E47 in embryonic NSCs in vitro impaired neurite outgrowth, and overexpression of E47 in vivo by in utero electroporation disturbed proper layer-specific neurogenesis and upregulated p57(KIP2) expression. Overall, this study identifies E2A target genes in embryonic NSCs and demonstrates that E47 regulates neuronal differentiation via p57(KIP2).


Asunto(s)
Empalme Alternativo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Corteza Cerebral/embriología , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Neuronas/citología , Factor de Transcripción 3/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Ciclo Celular/genética , Corteza Cerebral/citología , Cromatina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Unión Proteica , Factor de Transcripción 3/deficiencia , Transcripción Genética
8.
Circulation ; 138(18): 2007-2020, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29748186

RESUMEN

BACKGROUND: Alternative macrophage activation, which relies on mitochondrial oxidative metabolism, plays a central role in the resolution of inflammation and prevents atherosclerosis. Moreover, macrophages handle large amounts of cholesterol and triglycerides derived from the engulfed modified lipoproteins during atherosclerosis. Although several microRNAs regulate macrophage polarization, the role of the microRNA-generating enzyme Dicer in macrophage activation during atherosclerosis is unknown. METHODS: To evaluate the role of Dicer in atherosclerosis, Apoe-/- mice with or without macrophage-specific Dicer deletion were fed a high-fat diet for 12 weeks. Anti-argonaute 2 RNA immunoprecipitation chip and RNA deep sequencing combined with microRNA functional screening were performed in the Dicer wild-type and knockout bone marrow-derived macrophages to identify the individual microRNAs and the mRNA targets mediating the phenotypic effects of Dicer. The role of the identified individual microRNA and its target in atherosclerosis was determined by tail vein injection of the target site blockers in atherosclerotic Apoe-/- mice. RESULTS: We show that Dicer deletion in macrophages accelerated atherosclerosis in mice, along with enhanced inflammatory response and increased lipid accumulation in lesional macrophages. In vitro, alternative activation was limited whereas lipid-filled foam cell formation was exacerbated in Dicer-deficient macrophages as a result of impaired mitochondrial fatty acid oxidative metabolism. Rescue of microRNA (miR)-10a, let-7b, and miR-195a expression restored the oxidative metabolism in alternatively activated Dicer-deficient macrophages. Suppression of ligand-dependent nuclear receptor corepressor by miR-10a promoted fatty acid oxidation, which mediated the lipolytic and anti-inflammatory effect of Dicer. miR-10a expression was negatively correlated to the progression of atherosclerosis in humans. Blocking the interaction between ligand-dependent nuclear receptor corepressor and miR-10a by target site blockers aggravated atherosclerosis development in mice. CONCLUSIONS: Dicer plays an atheroprotective role by coordinately regulating the inflammatory response and lipid metabolism in macrophages through enhancing fatty acid-fueled mitochondrial respiration, suggesting that promoting Dicer/miR-10a-dependent metabolic reprogramming in macrophages has potential therapeutic implications to prevent atherosclerosis.


Asunto(s)
Aterosclerosis/patología , Macrófagos/metabolismo , Ribonucleasa III/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Antagomirs/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Células de la Médula Ósea/citología , Dieta Alta en Grasa , Ácidos Grasos/química , Femenino , Humanos , Macrófagos/citología , Masculino , Ratones , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Co-Represor 2 de Receptor Nuclear/química , Co-Represor 2 de Receptor Nuclear/metabolismo , Estrés Oxidativo , Ribonucleasa III/genética
9.
Nucleic Acids Res ; 45(19): 11121-11130, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977492

RESUMEN

Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation.


Asunto(s)
Regulación de la Expresión Génica , Efectores Tipo Activadores de la Transcripción/genética , Factores de Transcripción/genética , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Microscopía Fluorescente , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Efectores Tipo Activadores de la Transcripción/metabolismo , Factores de Transcripción/metabolismo
10.
Genome Res ; 25(6): 836-44, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25957148

RESUMEN

Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GR's tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR.


Asunto(s)
Genómica/métodos , Glucocorticoides/farmacología , Receptores de Glucocorticoides/genética , Activación Transcripcional , Animales , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Clonación Molecular , Expresión Génica , Terapia Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Receptores de Glucocorticoides/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Nature ; 480(7378): 552-6, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22170608

RESUMEN

Mammalian metabolism is highly circadian and major hormonal circuits involving nuclear hormone receptors display interlinked diurnal cycling. However, mechanisms that logically explain the coordination of nuclear hormone receptors and the clock are poorly understood. Here we show that two circadian co-regulators, cryptochromes 1 and 2, interact with the glucocorticoid receptor in a ligand-dependent fashion and globally alter the transcriptional response to glucocorticoids in mouse embryonic fibroblasts: cryptochrome deficiency vastly decreases gene repression and approximately doubles the number of dexamethasone-induced genes, suggesting that cryptochromes broadly oppose glucocorticoid receptor activation and promote repression. In mice, genetic loss of cryptochrome 1 and/or 2 results in glucose intolerance and constitutively high levels of circulating corticosterone, suggesting reduced suppression of the hypothalamic-pituitary-adrenal axis coupled with increased glucocorticoid transactivation in the liver. Genomically, cryptochromes 1 and 2 associate with a glucocorticoid response element in the phosphoenolpyruvate carboxykinase 1 promoter in a hormone-dependent manner, and dexamethasone-induced transcription of the phosphoenolpyruvate carboxykinase 1 gene was strikingly increased in cryptochrome-deficient livers. These results reveal a specific mechanism through which cryptochromes couple the activity of clock and receptor target genes to complex genomic circuits underpinning normal metabolic homeostasis.


Asunto(s)
Ritmo Circadiano , Criptocromos/metabolismo , Regulación de la Expresión Génica , Receptores de Glucocorticoides/metabolismo , Animales , Corticosterona/sangre , Criptocromos/genética , Dexametasona/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Intolerancia a la Glucosa/genética , Células HEK293 , Humanos , Hígado/enzimología , Hígado/metabolismo , Ratones , Fosfoenolpiruvato Carboxiquinasa (GTP)/sangre , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo
12.
Nat Genet ; 39(8): 1018-24, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17618285

RESUMEN

Nephronophthisis (NPHP), an autosomal recessive kidney disease, is the most frequent genetic cause of end-stage renal failure in the first three decades of life. Positional cloning of the six known NPHP genes has linked its pathogenesis to primary cilia function. Here we identify mutation of GLIS2 as causing an NPHP-like phenotype in humans and mice, using positional cloning and mouse transgenics, respectively. Kidneys of Glis2 mutant mice show severe renal atrophy and fibrosis starting at 8 weeks of age. Differential gene expression studies on Glis2 mutant kidneys demonstrate that genes promoting epithelial-to-mesenchymal transition and fibrosis are upregulated in the absence of Glis2. Thus, we identify Glis2 as a transcription factor mutated in NPHP and demonstrate its essential role for the maintenance of renal tissue architecture through prevention of apoptosis and fibrosis.


Asunto(s)
Enfermedades Renales/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Animales , Apoptosis , Línea Celular , Perros , Femenino , Fibrosis/genética , Humanos , Riñón/patología , Riñón/fisiología , Enfermedades Renales/patología , Masculino , Ratones , Linaje
13.
Comput Struct Biotechnol J ; 21: 1697-1710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36879886

RESUMEN

Glucocorticoids are potent immunosuppressive drugs, but long-term treatment leads to severe side-effects. While there is a commonly accepted model for GR-mediated gene activation, the mechanism behind repression remains elusive. Understanding the molecular action of the glucocorticoid receptor (GR) mediated gene repression is the first step towards developing novel therapies. We devised an approach that combines multiple epigenetic assays with 3D chromatin data to find sequence patterns predicting gene expression change. We systematically tested> 100 models to evaluate the best way to integrate the data types and found that GR-bound regions hold most of the information needed to predict the polarity of Dex-induced transcriptional changes. We confirmed NF-κB motif family members as predictors for gene repression and identified STAT motifs as additional negative predictors.

14.
Acta Physiol (Oxf) ; 237(3): e13936, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36645134

RESUMEN

The circadian clock is a hierarchical timing system regulating most physiological and behavioral functions with a period of approximately 24 h in humans and other mammalian species. The circadian clock drives daily eating rhythms that, in turn, reinforce the circadian clock network itself to anticipate and orchestrate metabolic responses to food intake. Eating is tightly interconnected with the circadian clock and recent evidence shows that the timing of meals is crucial for the control of appetite and metabolic regulation. Obesity results from combined long-term dysregulation in food intake (homeostatic and hedonic circuits), energy expenditure, and energy storage. Increasing evidence supports that the loss of synchrony of daily rhythms significantly impairs metabolic homeostasis and is associated with obesity. This review presents an overview of mechanisms regulating food intake (homeostatic/hedonic) and focuses on the crucial role of the circadian clock on the metabolic response to eating, thus providing a fundamental research axis to maintain a healthy eating behavior.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Humanos , Animales , Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Obesidad , Relojes Circadianos/fisiología , Ingestión de Alimentos/fisiología , Mamíferos
15.
Pharmacol Ther ; 251: 108531, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717739

RESUMEN

Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Glucocorticoides , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Factores de Transcripción/metabolismo
16.
FEBS Lett ; 596(20): 2596-2616, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35612756

RESUMEN

Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favourable clinical outcomes. We describe current knowledge about 3D genome organisation and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarise the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterising these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ligandos , Cromatina/genética , Factores de Transcripción/genética
17.
Trends Genet ; 24(7): 361-71, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18514358

RESUMEN

Although we are rapidly gaining a more complete understanding of the genes required for kidney function, the molecular pathways that actively maintain organ homeostasis are only beginning to emerge. The study of the most common genetic cause of renal failure, polycystic kidney disease, has revealed a surprising role for primary cilia in controlling nuclear gene expression and cell division during development as well as maintenance of kidney architecture. Conditions that disturb kidney integrity seem to be associated with reversal of developmental processes that ultimately lead to kidney fibrosis and end-stage renal disease (ESRD). In this review, we discuss transcriptional regulators and networks that are important in kidney disease, focusing on those that mediate cilia function and drive renal fibrosis.


Asunto(s)
Homeostasis , Enfermedades Renales/genética , Enfermedades Renales/fisiopatología , Transcripción Genética , Cilios/patología , Salud , Humanos , Podocitos/patología
18.
Cell Rep ; 34(6): 108742, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567280

RESUMEN

Glucocorticoids (GCs) are effective anti-inflammatory drugs; yet, their mechanisms of action are poorly understood. GCs bind to the glucocorticoid receptor (GR), a ligand-gated transcription factor controlling gene expression in numerous cell types. Here, we characterize GR's protein interactome and find the SETD1A (SET domain containing 1A)/COMPASS (complex of proteins associated with Set1) histone H3 lysine 4 (H3K4) methyltransferase complex highly enriched in activated mouse macrophages. We show that SETD1A/COMPASS is recruited by GR to specific cis-regulatory elements, coinciding with H3K4 methylation dynamics at subsets of sites, upon treatment with lipopolysaccharide (LPS) and GCs. By chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-seq, we identify subsets of GR target loci that display SETD1A occupancy, H3K4 mono-, di-, or tri-methylation patterns, and transcriptional changes. However, our data on methylation status and COMPASS recruitment suggest that SETD1A has additional transcriptional functions. Setd1a loss-of-function studies reveal that SETD1A/COMPASS is required for GR-controlled transcription of subsets of macrophage target genes. We demonstrate that the SETD1A/COMPASS complex cooperates with GR to mediate anti-inflammatory effects.


Asunto(s)
Elementos de Facilitación Genéticos/inmunología , Macrófagos/inmunología , Complejos Multiproteicos , RNA-Seq , Receptores de Glucocorticoides , Transcripción Genética/inmunología , Animales , Inflamación/genética , Inflamación/inmunología , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/inmunología
19.
Comput Struct Biotechnol J ; 18: 1330-1341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612756

RESUMEN

Advancements in the field of next generation sequencing lead to the generation of ever-more data, with the challenge often being how to combine and reconcile results from different OMICs studies such as genome, epigenome and transcriptome. Here we provide an overview of the standard processing pipelines for ChIP-seq and RNA-seq as well as common downstream analyses. We describe popular multi-omics data integration approaches used to identify target genes and co-factors, and we discuss how machine learning techniques may predict transcriptional regulators and gene expression.

20.
Nat Commun ; 10(1): 306, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659202

RESUMEN

Glucocorticoids (GCs) are effective drugs, but their clinical use is compromised by severe side effects including hyperglycemia, hyperlipidemia and obesity. They bind to the Glucocorticoid Receptor (GR), which acts as a transcription factor. The activation of metabolic genes by GR is thought to underlie these adverse effects. We identify the bHLH factor E47 as a modulator of GR target genes. Using mouse genetics, we find that E47 is required for the regulation of hepatic glucose and lipid metabolism by GR, and that loss of E47 prevents the development of hyperglycemia and hepatic steatosis in response to GCs. Here we show that E47 and GR co-occupy metabolic promoters and enhancers. E47 is needed for the efficient recruitment of GR and coregulators such as Mediator to chromatin. Altogether, our results illustrate how GR and E47 regulate hepatic metabolism, and might provide an entry point for novel therapies with reduced side effects.


Asunto(s)
Glucocorticoides/farmacología , Hígado/efectos de los fármacos , Receptores de Glucocorticoides/genética , Factor de Transcripción 3/genética , Animales , Inmunoprecipitación de Cromatina/métodos , Hígado Graso/metabolismo , Perfilación de la Expresión Génica , Glucocorticoides/efectos adversos , Glucosa/genética , Glucosa/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Masculino , Ratones Noqueados , Factor de Transcripción 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA