Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Virol ; 166(4): 1177-1182, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33580381

RESUMEN

Respiratory syncytial virus (RSV) is most commonly associated with upper respiratory tract infections during childhood. The lipid composition of cells and lipogenic enzymes play an important role in RSV infection. There are controversial data about whether lipid biosynthesis regulators such as AMP-activated protein kinase (AMPK) are deregulated by RSV. Hence, we examined whether the activation state of AMPK is altered in RSV-infected HEp-2 cells. Our data show that RSV infection inhibits AMPK activity, favoring the activation of downstream lipogenic effectors and cellular lipid anabolism in HEp-2 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Metabolismo de los Lípidos , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Replicación Viral
2.
Microorganisms ; 11(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513023

RESUMEN

Once regarded as inert organelles with limited and ill-defined roles, lipid droplets (LDs) have emerged as dynamic entities with multifaceted functions within the cell. Recent research has illuminated their pivotal role as primary energy reservoirs in the form of lipids, capable of being metabolized to meet cellular energy demands. Their high dynamism is underscored by their ability to interact with numerous cellular organelles, notably the endoplasmic reticulum (the site of LD genesis) and mitochondria, which utilize small LDs for energy production. Beyond their contribution to cellular bioenergetics, LDs have been associated with viral infections. Evidence suggests that viruses can co-opt LDs to facilitate their infection cycle. Furthermore, recent discoveries highlight the role of LDs in modulating the host's immune response. Observations of altered LD levels during viral infections suggest their involvement in disease pathophysiology, potentially through production of proinflammatory mediators using LD lipids as precursors. This review explores these intriguing aspects of LDs, shedding light on their multifaceted nature and implications in viral interactions and disease development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA