Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 1998-2008, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457424

RESUMEN

Histidine-containing phosphocarrier protein (HPr) is a general component of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) involved in the phosphorylation-coupled transport of numerous sugars called PTS sugars. HPr mainly exists in a dephosphorylated form in the presence of PTS sugars in the medium, while its phosphorylation increases in the absence of PTS sugars. A recent study revealed that the dephosphorylated form of HPr binds and antagonizes the function of the antisigma factor Rsd. This anti-sigma factor sequesters the housekeeping sigma factor σ(70) to facilitate switching of the sigma subunit on RNA polymerase from σ(70) to the stress-responsive sigma factor σ(S) in stationary-phase cells. In this study, the structure of the complex of Rsd and HPr was determined at 2.1 Šresolution and revealed that the binding site for HPr on the surface of Rsd partly overlaps with that for σ(70). The localization of the phosphorylation site on HPr at the binding interface for Rsd explains why phosphorylation of HPr abolishes its binding to Rsd. The mutation of crucial residues involved in the HPr-Rsd interaction significantly influenced the competition between HPr and σ(70) for binding to Rsd both in vitro and in vivo. The results provide a structural basis for the linkage of global gene regulation to nutrient availability in the external environment.


Asunto(s)
Proteínas Bacterianas/química , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Proteínas Represoras/química , Factor sigma/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Represoras/metabolismo , Factor sigma/metabolismo
2.
Biochem Biophys Res Commun ; 446(4): 971-6, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24657263

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen with the ability to survive and replicate in macrophages. Periplasmic copper binding protein CueP is known to confer copper resistance to S. Typhimurium, and has been implicated in ROS scavenge activity by transferring the copper ion to a periplasmic superoxide dismutase or by directly reducing the copper ion. Structural and biochemical studies on CueP showed that its copper binding site is surrounded by conserved cysteine residues. Here, we present evidence that periplasmic disulfide isomerase DsbC plays a key role in maintaining CueP protein in the reduced state. We observed purified DsbC protein efficiently reduced the oxidized form of CueP, and that it acted on two (Cys104 and Cys172) of the three conserved cysteine residues. Furthermore, we found that a surface-exposed conserved phenylalanine residue in CueP was important for this process, which suggests that DsbC specifically recognizes the residue of CueP. An experiment using an Escherichia coli system confirmed the critical role played by DsbC in the ROS scavenge activity of CueP. Taken together, we propose a molecular insight into how CueP collaborates with the periplasmic disulfide reduction system in the pathogenesis of the bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Portadoras/química , Cobre/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteína Disulfuro Isomerasas/química , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhimurium/química , Alineación de Secuencia
3.
Biochemistry ; 52(51): 9385-93, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24308818

RESUMEN

Lysozymes are the first line of defense for a diverse range of organisms that catalyze the degradation of bacterial peptidoglycan. Gram-negative bacteria produce proteinaceous lysozyme inhibitors to protect themselves from the action of lysozymes. To date, MliC or PliC (membrane-bound or periplasmic inhibitor of c-type lysozyme, respectively) has been found in various Gram-negative bacteria. Here, we report the crystal structures of Brucella abortus PliC and its complex with human c-type lysozyme. The complex structure demonstrates that the invariant loop of MliC/PliC plays a crucial role in the inhibition of lysozyme via its insertion into the active site cleft of the lysozyme, as previously observed in the complex structure of Pseudomonas aeruginosa MliC and chicken c-type lysozyme. We identified a new binding interface between a loop adjacent to the active site of human lysozyme and a loop carrying Glu112 of B. abortus PliC, the structure of which was disordered in P. aeruginosa MliC. Because MliC/PliC family members have been implicated as putative colonization or virulence factors, the structures and mechanism of action of MliC/PliC will be relevant to the control of bacterial growth in animal hosts.


Asunto(s)
Proteínas Bacterianas/química , Brucella abortus/metabolismo , Inhibidores Enzimáticos/química , Modelos Moleculares , Muramidasa/antagonistas & inhibidores , Proteínas Periplasmáticas/química , Factores de Virulencia/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/patogenicidad , Secuencia Conservada , Cristalografía por Rayos X , Bases de Datos de Proteínas , Inhibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/química , Humanos , Muramidasa/química , Muramidasa/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Cells ; 11(24)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552858

RESUMEN

Thyroid hormone receptor-interacting protein 13 (TRIP13) participates in various regulatory steps related to the cell cycle, such as the mitotic spindle assembly checkpoint and meiotic recombination, possibly by interacting with members of the HORMA domain protein family. Recently, it was reported that TRIP13 could regulate the choice of the DNA repair pathway, i.e., homologous recombination (HR) or nonhomologous end-joining (NHEJ). However, TRIP13 is recruited to DNA damage sites within a few seconds after damage and may therefore have another function in DNA repair other than regulation of the pathway choice. Furthermore, the depletion of TRIP13 inhibited both HR and NHEJ, suggesting that TRIP13 plays other roles besides regulation of choice between HR and NHEJ. To explore the unidentified functions of TRIP13 in the DNA damage response, we investigated its genome-wide interaction partners in the context of DNA damage using quantitative proteomics with proximity labeling. We identified MRE11 as a novel interacting partner of TRIP13. TRIP13 controlled the recruitment of MDC1 to DNA damage sites by regulating the interaction between MDC1 and the MRN complex. Consistently, TRIP13 was involved in ATM signaling amplification. Our study provides new insight into the function of TRIP13 in immediate-early DNA damage sensing and ATM signaling activation.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Nucleares , Proteínas de Unión al ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteínas Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , ADN
5.
Mol Cells ; 38(8): 715-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26082031

RESUMEN

In Gram-negative bacteria in the periplasmic space, the dimeric thioredoxin-fold protein DsbC isomerizes and reduces incorrect disulfide bonds of unfolded proteins, while the monomeric thioredoxin-fold protein DsbA introduces disulfide bonds in folding proteins. In the Gram-negative bacteria Salmonella enterica serovar Typhimurium, the reduced form of CueP scavenges the production of hydroxyl radicals in the copper-mediated Fenton reaction, and DsbC is responsible for keeping CueP in the reduced, active form. Some DsbA proteins fulfill the functions of DsbCs, which are not present in Gram-positive bacteria. In this study, we identified a DsbA homologous protein (CdDsbA) in the Corynebacterium diphtheriae genome and determined its crystal structure in the reduced condition at 1.5 Å resolution. CdDsbA consists of a monomeric thioredoxin-like fold with an inserted helical domain and unique N-terminal extended region. We confirmed that CdDsbA has disulfide bond isomerase/reductase activity, and we present evidence that the N-terminal extended region is not required for this activity and folding of the core DsbA-like domain. Furthermore, we found that CdDsbA could reduce CueP from C. diphtheriae.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Corynebacterium diphtheriae/metabolismo , Proteínas de Unión al ADN/metabolismo , Bacterias Grampositivas/metabolismo , Proteínas Bacterianas/genética , Conformación Proteica
6.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1167-72, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195886

RESUMEN

Disulfide-bond formation, mediated by the Dsb family of proteins, is important in the correct folding of secreted or extracellular proteins in bacteria. In Gram-negative bacteria, disulfide bonds are introduced into the folding proteins in the periplasm by DsbA. DsbE from Escherichia coli has been implicated in the reduction of disulfide bonds in the maturation of cytochrome c. The Gram-positive bacterium Mycobacterium tuberculosis encodes DsbE and its homologue DsbF, the structures of which have been determined. However, the two mycobacterial proteins are able to oxidatively fold a protein in vitro, unlike DsbE from E. coli. In this study, the crystal structure of a DsbE or DsbF homologue protein from Corynebacterium diphtheriae has been determined, which revealed a thioredoxin-like domain with a typical CXXC active site. Structural comparison with M. tuberculosis DsbF would help in understanding the function of the C. diphtheriae protein.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium diphtheriae/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Dominio Catalítico , Cristalización , Cartilla de ADN , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
7.
Mol Cells ; 37(2): 100-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24598994

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Cobre/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Línea Celular , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Peróxido de Hidrógeno/farmacología , Macrófagos/microbiología , Ratones , Fagosomas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Salmonella/sangre , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA