RESUMEN
While the cell wall strictly controls cell size and morphology in bacteria, spheroplasts lack cell walls and can become enlarged in growth medium under optimal conditions. Optimal conditions depend on the bacterial species. We frequently observed extreme enlargement of spheroplasts of the radiation-resistant bacterium Deinococcus grandis in Difco Marine Broth 2216, but not in TGY broth (a commonly used growth medium for Deinococcus). Thorough investigation of media components showed that the presence of Mg2+ or Ca2+ promoted extreme spheroplast enlargement, synthesizing the outer membrane. Our findings strongly suggest that Mg2+ or Ca2+ enlarges spheroplasts, which could change the lipid composition of the spheroplast membrane.
Asunto(s)
Calcio/metabolismo , Deinococcus/crecimiento & desarrollo , Magnesio/metabolismo , Lípidos de la Membrana/metabolismo , Esferoplastos/crecimiento & desarrollo , Medios de Cultivo/metabolismoRESUMEN
Silkworm silk has outstanding mechanical properties despite being spun at room temperature and from aqueous solution. Although it has been proposed that fiber formation is mainly induced by shearing and extensional flow in the spinneret, the detailed structure and function of the spinning apparatus of Bombyx mori silkworms are still not fully elucidated. In this paper we describe three aspects of the functional microanatomy of the spinning apparatus: changes in the diameter of the silk gland duct with distance along the duct, how the birefringence of the fibroin changes as it flows down the duct, and the detailed three-dimensional structure of the silk press and related structures. The existence of a double escaped nematic liquid crystal texture in the fibroin in a region of the duct is described. After this region the birefringence suddenly disappeared until the start of an internal draw down taper which commenced just before the silk press. In the internal draw down taper the birefringence increased dramatically to an asymptotic value as a thread was drawn from the fibroin gel. The structure of the silk press suggests that it acts as a restriction die whose diameter can be regulated.
Asunto(s)
Bombyx/anatomía & histología , Seda/química , Animales , Bombyx/fisiología , Fibroínas/química , Modelos Anatómicos , Modelos Biológicos , Conformación MolecularRESUMEN
The molecular conformation of silk fibrion is characterized by solid-state 13C NMR before spinning (silk I structure) and after spinning (silk II structure). We compare native silk fibers with the quasi-crystalline Cp-fraction and a synthetic model peptide (Ala-Gly)15, both of which can be converted either into silk I by dialysis from 9 M LiBr or into silk II by treatment with formic acid. Our results demonstrate that silk II fibers are intrinsically heterogeneous, consisting of beta-sheets, distorted beta-turns, and distorted beta-sheets. This higher-order heterogeneity is revealed by the 13C-NMR Cbeta-peak of Ala, indicating that the Ala side chains are stacked partially in parallel and partially face-to-face, at a ratio of 1:2.