Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 389(7): 589-601, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37272516

RESUMEN

BACKGROUND: Isocitrate dehydrogenase (IDH)-mutant grade 2 gliomas are malignant brain tumors that cause considerable disability and premature death. Vorasidenib, an oral brain-penetrant inhibitor of mutant IDH1 and IDH2 enzymes, showed preliminary activity in IDH-mutant gliomas. METHODS: In a double-blind, phase 3 trial, we randomly assigned patients with residual or recurrent grade 2 IDH-mutant glioma who had undergone no previous treatment other than surgery to receive either oral vorasidenib (40 mg once daily) or matched placebo in 28-day cycles. The primary end point was imaging-based progression-free survival according to blinded assessment by an independent review committee. The key secondary end point was the time to the next anticancer intervention. Crossover to vorasidenib from placebo was permitted on confirmation of imaging-based disease progression. Safety was also assessed. RESULTS: A total of 331 patients were assigned to receive vorasidenib (168 patients) or placebo (163 patients). At a median follow-up of 14.2 months, 226 patients (68.3%) were continuing to receive vorasidenib or placebo. Progression-free survival was significantly improved in the vorasidenib group as compared with the placebo group (median progression-free survival, 27.7 months vs. 11.1 months; hazard ratio for disease progression or death, 0.39; 95% confidence interval [CI], 0.27 to 0.56; P<0.001). The time to the next intervention was significantly improved in the vorasidenib group as compared with the placebo group (hazard ratio, 0.26; 95% CI, 0.15 to 0.43; P<0.001). Adverse events of grade 3 or higher occurred in 22.8% of the patients who received vorasidenib and in 13.5% of those who received placebo. An increased alanine aminotransferase level of grade 3 or higher occurred in 9.6% of the patients who received vorasidenib and in no patients who received placebo. CONCLUSIONS: In patients with grade 2 IDH-mutant glioma, vorasidenib significantly improved progression-free survival and delayed the time to the next intervention. (Funded by Servier; INDIGO ClinicalTrials.gov number, NCT04164901.).


Asunto(s)
Antineoplásicos , Glioma , Recurrencia Local de Neoplasia , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Progresión de la Enfermedad , Método Doble Ciego , Glioma/tratamiento farmacológico , Glioma/genética , Isocitrato Deshidrogenasa/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Piridinas/efectos adversos , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico
2.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37657463

RESUMEN

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Asunto(s)
Antineoplásicos , Glioblastoma , Glioma , Adulto , Femenino , Humanos , Masculino , Quimioradioterapia , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Adolescente , Persona de Mediana Edad , Anciano
3.
J Neurooncol ; 146(2): 339-346, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31873875

RESUMEN

PURPOSE: It can be challenging to differentiate pseudoprogression from progression. We assessed the ability of dynamic contrast enhanced T1 MRI (DCE-MRI) perfusion to identify pseudoprogression in melanoma brain metastases. METHODS: Patients with melanoma brain metastases who underwent immunotherapy and DCE-MRI were identified. Enhancing lesions ≥  5mm in diameter on DCE-MRI and that were new or increased in size between a week from beginning the treatment, and a month after completing the treatment were included in the analysis. The 90th percentiles of rVp and rKtrans and the presence or absence of hemorrhage were recorded. Histopathology served as the reference standard for pseudoprogression. If not available, pseudoprogression was defined as neurological and radiographic stability or improvement without any new treatment for ≥ 2 months. RESULTS: Forty-four patients were identified; 64% received ipilimumab monotherapy for a median duration of 9 weeks (range, 1-138). Sixty-four lesions in 44 patients were included in the study. Of these, nine lesions in eight patients were determined to be pseudoprogression and seven lesions were previously irradiated. Forty-four progression lesions and eight pseudoprogression lesions were hemorrhagic. Median lesion volume for pseudoprogression and progression were not significantly different, at 2.3 cm3 and 3.2 cm3, respectively (p = 0.82). The rVp90 was smaller in pseudoprogression versus progression, at 2.2 and 5.3, respectively (p = 0.02), and remained significant after false discovery rate adjustment (p = 0.04). CONCLUSIONS: Pseudoprogression exhibited significantly lower rVp90 on DCE-MRI compared with progression. This knowledge can be useful for managing growing lesions in patients with melanoma brain metastases who are receiving immunotherapy.


Asunto(s)
Neoplasias Encefálicas/patología , Inmunoterapia/métodos , Imagen por Resonancia Magnética/métodos , Melanoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/terapia , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Melanoma/terapia , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
4.
J Neurooncol ; 143(2): 313-319, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30977058

RESUMEN

BACKGROUND AND PURPOSE: We evaluated whether dose-intensified chemoradiation alters patterns of failure and is associated with favorable survival in the temozolomide era. MATERIALS AND METHODS: Between 2003 and 2015, 82 patients with newly diagnosed glioblastoma were treated with 66-81 Gy in 30 fractions using conventional magnetic resonance imaging. Progression-free (PFS) and overall survival (OS) were calculated using Kaplan-Meier methods. Factors associated with improved PFS, OS, and time to progression were assessed using multivariate Cox model and linear regression. RESULTS: Median follow-up was 23 months (95% CI 4-124 months). Sixty-one percent of patients underwent subtotal resection or biopsy, and 38% (10/26) of patients with available data had MGMT promoter methylation. Median PFS was 8.4 months (95% CI 7.3-11.0) and OS was 18.7 months (95% CI 13.1-25.3). Only 30 patients (44%) experienced central recurrence, 6 (9%) in-field, 16 (23.5%) marginal and 16 (23.5%) distant. On multivariate analysis, younger age (HR 0.95, 95% CI 0.93-0.97, p = 0.0001), higher performance status (HR 0.39, 95% CI 0.16-0.95, p = 0.04), gross total resection (GTR) versus biopsy (HR 0.37, 95% CI 0.16-0.85, p = 0.02) and MGMT methylation (HR 0.25, 95% CI 0.09-0.71, p = 0.009) were associated with improved OS. Only distant versus central recurrence (p = 0.03) and GTR (p = 0.02) were associated with longer time to progression. Late grade 3 neurologic toxicity was rare (6%) in patients experiencing long-term survival. CONCLUSION: Dose-escalated chemoRT resulted in lower rates of central recurrence and prolonged time to progression compared to historical controls, although a significant number of central recurrences were still observed. Advanced imaging and correlative molecular studies may enable targeted treatment advances that reduce rates of in- and out-of-field progression.


Asunto(s)
Neoplasias Encefálicas/mortalidad , Quimioradioterapia/mortalidad , Glioblastoma/mortalidad , Terapia Recuperativa , Temozolomida/uso terapéutico , Adulto , Anciano , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Femenino , Estudios de Seguimiento , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
5.
J Neurooncol ; 145(1): 97-105, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31456142

RESUMEN

BACKGROUND: H3 K27M-mutant diffuse midline glioma is a fatal malignancy with no proven medical therapies. The entity predominantly occurs in children and young adults. ONC201 is a small molecule selective antagonist of dopamine receptor D2/3 (DRD2/3) with an exceptional safety profile. Following up on a durable response in the first H3 K27M-mutant diffuse midline glioma patient who received ONC201 (NCT02525692), an expanded access program was initiated. METHODS: Patients with H3 K27M-mutant gliomas who received at least prior radiation were eligible. Patients with leptomeningeal spread were excluded. All patients received open-label ONC201 orally once every week. Safety, radiographic assessments, and overall survival were regularly assessed at least every 8 weeks by investigators. As of August 2018, a total of 18 patients with H3 K27M-mutant diffuse midline glioma or DIPG were enrolled to single patient expanded access ONC201 protocols. Among the 18 patients: seven adult (> 20 years old) and seven pediatric (< 20 years old) patients initiated ONC201 with recurrent disease and four pediatric patients initiated ONC201 following radiation, but prior to disease recurrence. FINDINGS: Among the 14 patients with recurrent disease prior to initiation of ONC201, median progression-free survival is 14 weeks and median overall survival is 17 weeks. Three adults among the 14 recurrent patients remain on treatment progression-free with a median follow up of 49.6 (range 41-76.1) weeks. Among the 4 pediatric patients who initiated adjuvant ONC201 following radiation, two DIPG patients remain progression-free for at least 53 and 81 weeks. Radiographic regressions, including a complete response, were reported by investigators in a subset of patients with thalamic and pontine gliomas, along with improvements in disease-associated neurological symptoms. INTERPRETATION: The clinical outcomes and radiographic responses in these patients provide the preliminary, and initial clinical proof-of-concept for targeting H3 K27M-mutant diffuse midline glioma with ONC201, regardless of age or location, providing rationale for robust clinical testing of the agent.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Histonas/genética , Mutación , Receptores de Dopamina D2/química , Adolescente , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Niño , Preescolar , Femenino , Estudios de Seguimiento , Glioma/genética , Glioma/patología , Humanos , Imidazoles , Masculino , Pronóstico , Piridinas , Pirimidinas , Tasa de Supervivencia , Adulto Joven
6.
Curr Oncol Rep ; 20(8): 60, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29876874

RESUMEN

PURPOSE OF REVIEW: Liquid biopsy is a sampling of tumor cells or tumor nucleotides from biofluids. This review explores the roles of liquid biopsy for evaluation and management of patients with primary and metastatic CNS malignancies. RECENT FINDINGS: Circulating tumor cell (CTC) detection has emerged as a relatively sensitive and specific tool for diagnosing leptomeningeal metastases. Circulating tumor DNA (ctDNA) detection can effectively demonstrate genetic markup of CNS tumors in the cerebrospinal fluid, though its role in managing CNS malignancies is less well-defined. The value of micro RNA (miRNA) detection in CNS malignancies is unclear at this time. Current standard clinical tools for the diagnosis and monitoring of CNS malignancies have limitations, and liquid biopsy may help address clinical practice and knowledge gaps. Liquid biopsy offers exciting potential for the diagnosis, prognosis, and treatment of CNS malignancies, but each modality needs to be studied in large prospective trials to better define their use.


Asunto(s)
Neoplasias del Sistema Nervioso Central/diagnóstico , Biopsia Líquida/normas , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/metabolismo , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/patología , MicroARN Circulante/líquido cefalorraquídeo , ADN Tumoral Circulante/líquido cefalorraquídeo , Humanos , Neoplasias Meníngeas/líquido cefalorraquídeo , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/patología , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología
7.
medRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38883740

RESUMEN

Outcomes for adult patients with a high-grade glioma continue to be dismal and new treatment paradigms are urgently needed. To optimize the opportunity for discovery, we performed a phase 0/1 dose-escalation clinical trial that investigated tumor pharmacokinetics, pharmacodynamics, and single nucleus transcriptomics following combined ribociclib (CDK4/6 inhibitor) and everolimus (mTOR inhibitor) treatment in recurrent high-grade glioma. Patients with a recurrent high-grade glioma (n = 24) harboring 1) CDKN2A / B deletion or CDK4 / 6 amplification, 2) PTEN loss or PIK3CA mutations, and 3) wild-type retinoblastoma protein (Rb) were enrolled. Patients received neoadjuvant ribociclib and everolimus treatment and no dose-limiting toxicities were observed. The median unbound ribociclib concentrations in Gadolinium non-enhancing tumor regions were 170 nM (range, 65 - 1770 nM) and 634 nM (range, 68 - 2345 nM) in patients receiving 5 days treatment at the daily dose of 400 and 600 mg, respectively. Unbound everolimus concentrations were below the limit of detection (< 0.1 nM) in both enhancing and non-enhancing tumor regions at all dose levels. We identified a significant decrease in MIB1 positive cells suggesting ribociclib-associated cell cycle inhibition. Single nuclei RNAseq (snRNA) based comparisons of 17 IDH-wild-type on-trial recurrences to 31 IDH-wild-type standard of care treated recurrences data demonstrated a significantly lower fraction of cycling and neural progenitor-like (NPC-like) malignant cell populations. We validated the CDK4/6 inhibitor-directed malignant cell state shifts using three patient-derived cell lines. The presented clinical trial highlights the value of integrating pharmacokinetics, pharmacodynamics, and single nucleus transcriptomics to assess treatment effects in phase 0/1 surgical tissues, including malignant cell state shifts. ClinicalTrials.gov identifier: NCT03834740 .

8.
JCO Precis Oncol ; 8: e2300454, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591867

RESUMEN

PURPOSE: The National Cancer Institute Molecular Analysis for Therapy Choice trial is a signal-finding genomically driven platform trial that assigns patients with any advanced refractory solid tumor, lymphoma, or myeloma to targeted therapies on the basis of next-generation sequencing results. Subprotocol E evaluated osimertinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, in patients with EGFR mutations. METHODS: Eligible patients had EGFR mutations (T790M or rare activating) and received osimertinib 80 mg once daily. Patients with lung cancer with EGFR T790M were excluded. The primary end point was objective response rate (ORR), and the secondary end points were 6-month progression-free survival (PFS), overall survival, and toxicity. RESULTS: A total of 19 patients were enrolled: 17 were evaluable for toxicity and 13 for efficacy. The median age of the 13 included in the efficacy analysis was 63 years, 62% had Eastern Cooperative Oncology Group performance status 1, and 31% received >three previous systemic therapies. The most common tumor type was brain cancers (54%). The ORR was 15.4% (n = 2 of 13; 90% CI, 2.8 to 41.0) and 6-month PFS was 16.7% (90% CI, 0 to 34.4). The two confirmed RECIST responses were observed in a patient with neuroendocrine carcinoma not otherwise specified (EGFR exon 20 S768T and exon 18 G719C mutation) and a patient with low-grade epithelial carcinoma of the paranasal sinus (EGFR D770_N771insSVD). The most common (>20%) treatment-related adverse events were diarrhea, thrombocytopenia, and maculopapular rash. CONCLUSION: In this pretreated cohort, osimertinib did not meet the prespecified end point threshold for efficacy, but responses were seen in a neuroendocrine carcinoma with an EGFR exon 20 S768T and exon 18 G719C mutation and an epithelial carcinoma with an EGFR D770_N771insSVD mutation. Osimertinib was well tolerated and had a safety profile consistent with previous studies.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Antineoplásicos , Carcinoma Neuroendocrino , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Estados Unidos , Humanos , Persona de Mediana Edad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , National Cancer Institute (U.S.) , Antineoplásicos/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Mutación , Carcinoma Neuroendocrino/tratamiento farmacológico
9.
J Clin Oncol ; 42(13): 1542-1552, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335473

RESUMEN

PURPOSE: Histone 3 (H3) K27M-mutant diffuse midline glioma (DMG) has a dismal prognosis with no established effective therapy beyond radiation. This integrated analysis evaluated single-agent ONC201 (dordaviprone), a first-in-class imipridone, in recurrent H3 K27M-mutant DMG. METHODS: Fifty patients (pediatric, n = 4; adult, n = 46) with recurrent H3 K27M-mutant DMG who received oral ONC201 monotherapy in four clinical trials or one expanded access protocol were included. Eligible patients had measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma (HGG) criteria and performance score (PS) ≥60 and were ≥90 days from radiation; pontine and spinal tumors were ineligible. The primary end point was overall response rate (ORR) by RANO-HGG criteria. Secondary end points included duration of response (DOR), time to response (TTR), corticosteroid response, PS response, and ORR by RANO low-grade glioma (LGG) criteria. Radiographic end points were assessed by dual-reader, blinded independent central review. RESULTS: The ORR (RANO-HGG) was 20.0% (95% CI, 10.0 to 33.7). The median TTR was 8.3 months (range, 1.9-15.9); the median DOR was 11.2 months (95% CI, 3.8 to not reached). The ORR by combined RANO-HGG/LGG criteria was 30.0% (95% CI, 17.9 to 44.6). A ≥50% corticosteroid dose reduction occurred in 7 of 15 evaluable patients (46.7% [95% CI, 21.3 to 73.4]); PS improvement occurred in 6 of 34 evaluable patients (20.6% [95% CI, 8.7 to 37.9]). Grade 3 treatment-related treatment-emergent adverse events (TR-TEAEs) occurred in 20.0% of patients; the most common was fatigue (n = 5; 10%); no grade 4 TR-TEAEs, deaths, or discontinuations occurred. CONCLUSION: ONC201 monotherapy was well tolerated and exhibited durable and clinically meaningful efficacy in recurrent H3 K27M-mutant DMG.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Mutación , Humanos , Adulto , Femenino , Masculino , Adolescente , Persona de Mediana Edad , Adulto Joven , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Niño , Histonas/genética , Anciano , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Preescolar , Pirimidinas/uso terapéutico , Pirimidinas/efectos adversos , Piridonas/uso terapéutico
10.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37902550

RESUMEN

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Asunto(s)
Glioblastoma , Transducción de Señal , Humanos , Ratones , Animales , Transducción de Señal/genética , Reparación del ADN , Daño del ADN , Guanosina Trifosfato
11.
Addict Biol ; 18(2): 325-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21507151

RESUMEN

The mu-opioid receptor encoded by the gene OPRM1 plays a primary role in opiate, alcohol, cocaine and nicotine addiction. Studies using opioid antagonists demonstrate that the mu-opioid receptor (MOP-r) also mediates the hypothalamic-pituitary-adrenal (HPA) axis stress response. A common polymorphism in exon one of the MOP-r gene, A118G, has been shown to significantly alter receptor function and MOP-r gene expression; therefore, this variant likely affects HPA-axis responsivity. In the current study, we have investigated whether the presence of the 118AG variant genotype affects HPA axis responsivity to the stressor metyrapone, which transiently blocks glucocorticoid production in the adrenal cortex. Forty-eight normal and healthy volunteers (32 men, 16 women) were studied, among whom nine men and seven women had the 118AG genotype. The 118G allele blunted the adrenocorticotropic hormone (ACTH) response to metyrapone. Although there was no difference in basal levels of ACTH, subjects with the 118AG genotype had a more modest rise and resultant significantly lower ACTH levels than those with the prototype 118AA at the 8-hour time point (P < 0.02). We found no significant difference between genders. These findings suggest a relatively greater tonic inhibition at hypothalamic-pituitary sites through the mu-opioid receptor and relatively less cyclical glucocorticoid inhibition in subjects with the 118G allele.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Receptores Opioides mu/genética , Estrés Fisiológico/genética , Trastornos Relacionados con Sustancias/genética , Hormona Adrenocorticotrópica/efectos de los fármacos , Hormona Adrenocorticotrópica/genética , Alelos , Análisis de Varianza , Antimetabolitos/farmacología , Área Bajo la Curva , Exones , Femenino , Genotipo , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Masculino , Metirapona/farmacología , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , Factores Sexuales , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
12.
Antioxid Redox Signal ; 39(13-15): 942-956, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36852494

RESUMEN

Aims: Targeting tumor metabolism may improve the outcomes for patients with glioblastoma (GBM). To further preclinical efforts targeting metabolism in GBM, we tested the hypothesis that brain tumors can be stratified into distinct metabolic groups with different patient outcomes. Therefore, to determine if tumor metabolites relate to patient survival, we profiled the metabolomes of human gliomas and correlated metabolic information with clinical data. Results: We found that isocitrate dehydrogenase-wildtype (IDHwt) GBMs are metabolically distinguishable from IDH mutated (IDHmut) astrocytomas and oligodendrogliomas. Survival of patients with IDHmut gliomas was expectedly more favorable than those with IDHwt GBM, and metabolic signatures can stratify IDHwt GBMs subtypes with varying prognoses. Patients whose GBMs were enriched in amino acids had improved survival, while those whose tumors were enriched for nucleotides, redox molecules, and lipid metabolites fared more poorly. These findings were recapitulated in validation cohorts using both metabolomic and transcriptomic data. Innovation: Our results suggest the existence of metabolic subtypes of GBM with differing prognoses, and further support the concept that metabolism may drive the aggressiveness of human gliomas. Conclusions: Our data show that metabolic signatures of human gliomas can inform patient survival. These findings may be used clinically to tailor novel metabolically targeted agents for GBM patients with different metabolic phenotypes. Antioxid. Redox Signal. 39, 942-956.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Mutación , Glioma/genética , Glioma/metabolismo , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
13.
bioRxiv ; 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090571

RESUMEN

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a G protein, that promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes non-homologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard of care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in non-malignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment.

14.
Cancer Discov ; 13(11): 2370-2393, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584601

RESUMEN

Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE: The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Histonas/genética , Resultado del Tratamiento , Epigénesis Genética , Mutación
15.
J Neuroimaging ; 32(3): 511-520, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34997668

RESUMEN

BACKGROUND AND PURPOSE: The utility of perfusion MRI in distinguishing between pilocytic astrocytoma (PA) and medulloblastoma (MB) is unclear. This study aimed to evaluate the diagnostic and prognostic performance of dynamic susceptibility contrast (DSC)-MRI parameters and apparent diffusion coefficient (ADC) values between PA and MB. METHODS: Between January 2012 and August 2021, 49 (median, 7 years [range, 1-28 years]; 28 females) and 35 (median, 8 years [1-24 years]; 12 females) patients with pathologically confirmed PA and MB, respectively, were included. The normalized relative cerebral blood volume and flow (nrCBV and nrCBF) and mean and minimal normalized ADC (nADCmean and nADCmin) values were calculated using volume-of-interest analyses. Diagnostic performance and Pearson's correlation with progression-free survival were also evaluated. RESULTS: The MB group showed a significantly higher nrCBV and nrCBF (nrCBV: 1.69 [0.93-4.23] vs. 0.95 [range, 0.37-2.28], p = .0032; nrCBF: 1.62 [0.93-3.16] vs. 1.07 [0.46-2.26], p = .0084) and significantly lower nADCmean and nADCmin (nADCmean: 0.97 [0.70-1.68] vs. 2.21 [1.44-2.80], p < .001; nADCmin: 0.50 [0.19-0.89] vs. 1.42 [0.89-2.20], p < .001) than the PA group. All parameters exhibited good diagnostic ability (accuracy >0.80) with nADCmin achieving the highest score (accuracy = 1). A moderate correlation was found between nADCmean and progression-free survival for MB (r = 0.44, p = .0084). CONCLUSIONS: DSC-MRI parameters and ADC values were useful for distinguishing between PA and MB. A lower ADC indicated an unfavorable MB prognosis, but the DSC-MRI parameters did not correlate with progression-free survival in either group.


Asunto(s)
Astrocitoma , Neoplasias Cerebelosas , Meduloblastoma , Astrocitoma/diagnóstico por imagen , Neoplasias Cerebelosas/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Meduloblastoma/diagnóstico por imagen , Estudios Retrospectivos
16.
Neurol Clin Pract ; 12(5): 344-351, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36380890

RESUMEN

Background and Objectives: Novel diagnostic techniques and neurologic biomarkers have greatly expanded clinical indications for CSF studies. CSF is most commonly obtained via lumbar puncture (LP). Although it is generally believed that LPs are well tolerated, there is a lack of supportive data for this claim, and patients anticipate LP to be painful. The objective of this study was to prospectively investigate discordance between patient perception and tolerability of LP. Methods: Adult patients were surveyed before and after LP regarding their perceptions and experience of LP. Physician perceptions were gathered through a web-based survey. Relative risk and Spearman correlation were used to assess the relationship between responses. Paired binomial and paired ordinal responses were compared by McNemar and paired Wilcoxon rank-sum tests. Results: A total of 178 patients completed the surveys. About half of the patients (58%) reported anxiety pre-LP, at median 3.0 of 10. Physicians overpredicted patients' pre-LP anxiety (median score 5.0, p < 0.001). Experienced pain was significantly less than predicted pain (median scores 0 and 3.0, respectively, p < 0.001). Patients who predicted pain were more likely to report pain from LP (relative risk [RR] 1.3). Predicting pain was also correlated with anxiety before LP (p < 0.001). Discussion: LP was generally well tolerated. The majority of patients experienced minimal pain. Anticipation of pain was correlated with both feeling anxious and experiencing pain. The results of this study can be used to reassure patients and providers that LP is indeed not as painful as imagined, which may both reduce pre-LP anxiety and improve LP tolerability.

17.
Neurooncol Pract ; 9(6): 536-544, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36388411

RESUMEN

Background: There is no consensus on the treatment of central nervous system (CNS) lymphoma refractory to first-line methotrexate-based chemotherapy. Whole brain radiotherapy (WBRT) is sometimes used but may result in unacceptable neurocognitive dysfunction. We examined the efficacy and toxicities of WBRT with or without concurrent temozolomide in CNS lymphoma treatment. Methods: This single-institution IRB-approved retrospective study included adults with CNS lymphoma who received WBRT, either consolidative low-dose WBRT alone or low-dose WBRT with a focal boost to residual disease and were previously treated with high-dose methotrexate. The relationships between the WBRT regimen, concurrent temozolomide, and clinical outcomes and toxicities were assessed using proportional hazards and logistic regression models. Results: A total of 45 patients with a median age of 64 years (range 24-74) treated from 2004 to 2019 were included. In total, 20 patients received concurrent temozolomide. In the WBRT + Boost cohort (n = 32), concurrent temozolomide resulted in better 2-year overall survival (OS) and progression free survival (PFS) (73% OS and 66% PFS) compared to patients treated without concurrent temozolomide (44% OS and 24% PFS). On multivariate analysis, concurrent temozolomide was associated with significantly better PFS (HR 0.28, P = .02). There were no significant differences between the two radiation groups or between those treated with or without concurrent temozolomide, with respect to significant acute hematologic, non-hematologic, and long-term neurocognitive toxicities (P > .05). Conclusions: In this study, concurrent temozolomide with radiotherapy in CNS lymphoma was associated with better PFS and was well tolerated. Low-dose WBRT with a boost is a safe and reasonable treatment approach for focal refractory disease. Prospective research that includes rigorous neurocognitive assessments is now warranted.

18.
Neuro Oncol ; 24(6): 855-871, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34999836

RESUMEN

BACKGROUND: There is an extensive literature highlighting the utility of blood-based liquid biopsies in several extracranial tumors for diagnosis and monitoring. METHODS: The RANO (Response Assessment in Neuro-Oncology) group developed a multidisciplinary international Task Force to review the English literature on liquid biopsy in gliomas focusing on the most frequently used techniques, that is circulating tumor DNA, circulating tumor cells, and extracellular vesicles in blood and CSF. RESULTS: ctDNA has a higher sensitivity and capacity to represent the spatial and temporal heterogeneity in comparison to circulating tumor cells. Exosomes have the advantages to cross an intact blood-brain barrier and carry also RNA, miRNA, and proteins. Several clinical applications of liquid biopsies are suggested: to establish a diagnosis when tissue is not available, monitor the residual disease after surgery, distinguish progression from pseudoprogression, and predict the outcome. CONCLUSIONS: There is a need for standardization of biofluid collection, choice of an analyte, and detection strategies along with rigorous testing in future clinical trials to validate findings and enable entry into clinical practice.


Asunto(s)
ADN Tumoral Circulante , Glioma , Células Neoplásicas Circulantes , Biomarcadores de Tumor , ADN Tumoral Circulante/genética , ADN de Neoplasias , Glioma/diagnóstico , Humanos , Biopsia Líquida/métodos , Células Neoplásicas Circulantes/metabolismo
19.
Neurooncol Adv ; 3(1): vdab146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34729486

RESUMEN

BACKGROUND: Many low-grade gliomas (LGG) harbor isocitrate dehydrogenase (IDH) mutations. Although IDH mutation is known to be epileptogenic, the rate of refractory seizures in LGG with IDH mutation vs wild-type had not been previously compared. We therefore compared seizure pharmacoresistance in IDH-mutated and wild-type LGGs. METHODS: Single-institution retrospective study of patients with histologic proven LGG, known IDH mutation status, seizures, and ≥2 neurology clinic encounters. Seizure history was followed until histological high-grade transformation or death. Seizures requiring ≥2 changes in anti-epileptic drugs were considered pharmacoresistant. Incidence rates of pharmacoresistant seizures were estimated using competing risks methodology. RESULTS: Of 135 patients, 25 patients (19%) had LGGs classified as IDH wild-type. Of those with IDH mutation, 104 (94.5%) were IDH1 R132H; only 6 were IDH2 R172K. 120 patients (89%) had tumor resection, and 14 (10%) had biopsy. Initial post-surgical management included observation (64%), concurrent chemoradiation (23%), chemotherapy alone (9%), and radiotherapy alone (4%). Seizures became pharmacoresistant in 24 IDH-mutated patients (22%) and in 3 IDH wild-type patients (12%). The 4-year cumulative incidence of intractable seizures was 17.6% (95% CI: 10.6%-25.9%) in IDH-mutated and 11% (95% CI: 1.3%-32.6%) in IDH wild-type LGG (Gray's P-value = .26). CONCLUSIONS: 22% of the IDH-mutated patients developed pharmacoresistant seizures, compared to 12% of the IDH wild-type tumors. The likelihood of developing pharmacoresistant seizures in patients with LGG-related epilepsy is independent to IDH mutation status, however, IDH-mutated tumors were approximately twice as likely to experience LGG-related pharmacoresistant seizures.

20.
Front Oncol ; 11: 703764, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422657

RESUMEN

Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA