Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 568(7750): E2, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30899104

RESUMEN

In this Letter, 'δ18C' should have been 'δ13C' in Fig. 3b, and the x axis should extend to 50 kyr rather than 40 kyr. This figure has been corrected online.

2.
Nature ; 562(7727): 410-413, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333577

RESUMEN

Increased storage of carbon in the oceans has been proposed as a mechanism to explain lower concentrations of atmospheric carbon dioxide during ice ages; however, unequivocal signatures of this storage have not been found1. In seawater, the dissolved gases oxygen and carbon dioxide are linked via the production and decay of organic material, with reconstructions of low oxygen concentrations in the past indicating an increase in biologically mediated carbon storage. Marine sediment proxy records have suggested that oxygen concentrations in the deep ocean were indeed lower during the last ice age, but that near-surface and intermediate waters of the Pacific Ocean-a large fraction of which are poorly oxygenated at present-were generally better oxygenated during the glacial1-3. This vertical opposition could suggest a minimal net basin-integrated change in carbon storage. Here we apply a dual-proxy approach, incorporating qualitative upper-water-column and quantitative bottom-water oxygen reconstructions4,5, to constrain changes in the vertical extent of low-oxygen waters in the eastern tropical Pacific since the last ice age. Our tandem proxy reconstructions provide evidence of a downward expansion of oxygen depletion in the eastern Pacific during the last glacial, with no indication of greater oxygenation in the upper reaches of the water column. We extrapolate our quantitative deep-water oxygen reconstructions to show that the respired carbon reservoir of the glacial Pacific was substantially increased, establishing it as an important component of the coupled mechanism that led to low levels of atmospheric carbon dioxide during the glacial.


Asunto(s)
Oxígeno/análisis , Agua de Mar/química , Clima Tropical , Foraminíferos/química , Foraminíferos/metabolismo , Hipoxia/metabolismo , Cubierta de Hielo , Oxígeno/metabolismo , Océano Pacífico
3.
Nat Commun ; 8: 14203, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112161

RESUMEN

The deep ocean is most likely the primary source of the radiocarbon-depleted CO2 released to the atmosphere during the last deglaciation. While there are well-documented millennial scale Δ14C changes during the most recent deglaciation, most marine records lack the resolution needed to identify more rapid ventilation events. Furthermore, potential age model problems with marine Δ14C records may obscure our understanding of the phase relationship between inter-ocean ventilation changes. Here we reconstruct changes in deep water and thermocline radiocarbon content over the last deglaciation in the eastern equatorial Pacific (EEP) using benthic and planktonic foraminiferal 14C. Our records demonstrate that ventilation of EEP thermocline and deep waters occurred synchronously during the last deglaciation. In addition, both gradual and rapid deglacial radiocarbon changes in these Pacific records are coeval with changes in the Atlantic records. This in-phase behaviour suggests that the Southern Ocean overturning was the dominant driver of changes in the Atlantic and Pacific ventilation during deglaciation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA