Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biochemistry ; 63(11): 1395-1411, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747545

RESUMEN

Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain-domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., Biochemistry, 2023, 62, 2232-2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.


Asunto(s)
Calmodulina , Mononucleótido de Flavina , Hemo , Espectrometría de Masas , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo I/química , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/química , Hemo/metabolismo , Hemo/química , Animales , Ratas , Calmodulina/metabolismo , Calmodulina/química , Espectrometría de Masas/métodos , Dominios Proteicos , Modelos Moleculares , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Unión Proteica
2.
Biochemistry ; 62(15): 2232-2237, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459398

RESUMEN

Nitric oxide synthase (NOS) is responsible for the biosynthesis of nitric oxide (NO), an important signaling molecule controlling diverse physiological processes such as neurotransmission and vasodilation. Neuronal NOS (nNOS) is a calmodulin (CaM)-controlled enzyme. In the absence of CaM, several intrinsic control elements, along with NADP+ binding, suppress electron transfer across the NOS domains. CaM binding relieves the inhibitory factors to promote the electron transport required for NO production. The regulatory dynamics of nNOS control elements are critical to governing NO signaling, yet mechanistic questions remain, because the intrinsic dynamics of NOS thwart traditional structural biology approaches. Here, we have employed cross-linking mass spectrometry (XL MS) to probe regulatory dynamics in nNOS, focusing on the CaM-responsive control elements. Quantitative XL MS revealed conformational changes differentiating the nNOS reductase (nNOSred) alone, nNOSred with NADP+, nNOS-CaM, and nNOS-CaM with NADP+. We observed distinct effects of CaM vs NADP+ on cross-linking patterns in nNOSred. CaM induces striking global changes, while the impact of NADP+ is primarily localized to the NADPH-binding subdomain. Moreover, CaM increases the abundance of intra-nNOS cross-links that are related to the formation of the inter-CaM-nNOS cross-links. Taken together, these XL MS results demonstrate that CaM and NADP+ site-specifically alter the nNOS conformational landscape.

3.
J Biol Chem ; 298(3): 101633, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077711

RESUMEN

Most transcription factors possess at least one long intrinsically disordered transactivation domain that binds to a variety of coactivators and corepressors and plays a key role in modulating the transcriptional activity. Despite the crucial importance of these domains, the structural and functional basis of transactivation remains poorly understood. Here, we focused on activating transcription factor 4 (ATF4)/cAMP response element-binding protein-2, an essential transcription factor for cellular stress adaptation. Bioinformatic sequence analysis of the ATF4 transactivation domain sequence revealed that the first 125 amino acids have noticeably less propensity for structural disorder than the rest of the domain. Using solution nuclear magnetic resonance spectroscopy complemented by a range of biophysical methods, we found that the isolated transactivation domain is predominantly yet not fully disordered in solution. We also observed that a short motif at the N-terminus of the transactivation domain has a high helical propensity. Importantly, we found that the N-terminal region of the transactivation domain is involved in transient long-range interactions with the basic-leucine zipper domain involved in DNA binding. Finally, in vitro phosphorylation assays with the casein kinase 2 show that the presence of the basic-leucine zipper domain is required for phosphorylation of the transactivation domain. This study uncovers the intricate coupling existing between the transactivation and basic-leucine zipper domains of ATF4, highlighting its potential regulatory significance.


Asunto(s)
Factor de Transcripción Activador 4 , Quinasa de la Caseína II , Leucina Zippers , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Fosforilación , Activación Transcripcional
4.
Nat Methods ; 16(7): 595-602, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249422

RESUMEN

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Análisis de Datos , Concentración de Iones de Hidrógeno
5.
J Am Chem Soc ; 143(2): 639-643, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33395291

RESUMEN

Phosphorylation is the most common reversible post-translational modification (PTM) of proteins. Because a given kinase often has many substrates in a cell and is involved in numerous functions, traditional inhibition of the enzyme leads to unintended consequences. Here we report synthetic receptors to manipulate kinase phosphorylation precisely for the first time, utilizing the receptors' abilities to bind peptides with high affinity and specificity. The inhibition enables selective phosphorylation of peptides with identical consensus motifs in a mixture. A particular phosphosite can be inhibited while other sites in the same substrate undergo phosphorylation. The receptors may work either individually on their targeted strands or in concert to protect segments of a long sequence. The binding-derived inhibition is able to compete with protein-protein interactions within a multidomain kinase, enabling controlled PTM to be performed in a previously unavailable manner.


Asunto(s)
Péptidos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Humanos , Modelos Moleculares , Estructura Molecular , Péptidos/química , Fosforilación , Fosfotransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
6.
Protein Expr Purif ; 167: 105540, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31740367

RESUMEN

Various fusion tags are commonly employed to increase the heterologous expression and solubility of aggregation-prone proteins within Escherichia coli. Herein, we present a protocol for efficient recombinant expression and purification of the human RNA demethylases Alkbh5 and FTO. Our method incorporates a novel fusion tag (the N-terminal domain of bacterial enzyme I, EIN) that dramatically increases the solubility of its fusion partner and is promptly removed upon digestion with a protease. The presented protocol allows for the production of mg amounts of Alkbh5 and FTO in 1L of both rich and minimal media. We developed a liquid chromatography-mass spectrometry (LC-MS)-based assay to confirm that both proteins are enzymatically active. Furthermore, the LC-MS method developed here is applicable to other members of the AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases. The superior protein yield, afforded by our expression and purification method, will facilitate biochemical investigations into the biological function of the human RNA demethylases and endorse employment of EIN as a broadly applicable fusion tag for recombinant expression projects.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Proteínas Recombinantes de Fusión , Desmetilasa de ARN, Homólogo 5 de AlkB/biosíntesis , Desmetilasa de ARN, Homólogo 5 de AlkB/aislamiento & purificación , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/biosíntesis , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cromatografía Liquida/métodos , Escherichia coli/genética , Etiquetas de Secuencia Expresada , Espectrometría de Masas/métodos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes , Solubilidad
7.
Biochemistry ; 58(36): 3767-3776, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31403288

RESUMEN

Pyk2 is a non-receptor tyrosine kinase that evolved from gene duplication of focal adhesion kinase (FAK) and subsequent functional specialization in the brain and hemopoietic cells. Pyk2 shares a domain organization with FAK, with an N-terminal regulatory FERM domain adjoining the kinase domain. FAK regulation involves integrin-mediated membrane clustering to relieve autoinhibitory interactions between FERM and kinase domains. Pyk2 regulation remains cryptic, involving Ca2+ influx and protein scaffolding. While the mechanism of the FAK FERM domain in autoinhibition is well-established, the regulatory role of the Pyk2 FERM is ambiguous. We probed the mechanisms of FERM-mediated autoinhibition of Pyk2 using hydrogen/deuterium exchange mass spectrometry and kinase activity profiling. The results reveal FERM-kinase interfaces that are responsible for autoinhibition. Pyk2 autoinhibition impacts the activation loop conformation. In addition, the autoinhibitory FERM-kinase interface exhibits allosteric linkage with the FERM basic patch conserved in both FAK and Pyk2.


Asunto(s)
Quinasa 2 de Adhesión Focal/antagonistas & inhibidores , Quinasa 2 de Adhesión Focal/química , Dominios Proteicos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Pruebas de Enzimas , Quinasa 2 de Adhesión Focal/genética , Humanos , Mutación , Conformación Proteica
8.
Proc Natl Acad Sci U S A ; 111(8): 2960-5, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516165

RESUMEN

Soluble guanylate cyclase (sGC) is the primary nitric oxide (NO) receptor in mammals and a central component of the NO-signaling pathway. The NO-signaling pathways mediate diverse physiological processes, including vasodilation, neurotransmission, and myocardial functions. sGC is a heterodimer assembled from two homologous subunits, each comprised of four domains. Although crystal structures of isolated domains have been reported, no structure is available for full-length sGC. We used single-particle electron microscopy to obtain the structure of the complete sGC heterodimer and determine its higher-order domain architecture. Overall, the protein is formed of two rigid modules: the catalytic dimer and the clustered Per/Art/Sim and heme-NO/O2-binding domains, connected by a parallel coiled coil at two hinge points. The quaternary assembly demonstrates a very high degree of flexibility. We captured hundreds of individual conformational snapshots of free sGC, NO-bound sGC, and guanosine-5'-[(α,ß)-methylene]triphosphate-bound sGC. The molecular architecture and pronounced flexibility observed provides a significant step forward in understanding the mechanism of NO signaling.


Asunto(s)
Guanilato Ciclasa/química , Guanilato Ciclasa/ultraestructura , Modelos Moleculares , Conformación Proteica , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/ultraestructura , Animales , Clonación Molecular , Activadores de Enzimas/metabolismo , Guanilato Ciclasa/metabolismo , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica de Transmisión , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Receptores Citoplasmáticos y Nucleares/metabolismo , Guanilil Ciclasa Soluble
9.
Proc Natl Acad Sci U S A ; 110(17): 6777-82, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23572573

RESUMEN

Nitric oxide (NO) signaling pathways mediate diverse physiological functions, including vasodilation and neurotransmission. Soluble guanylate cyclase (sGC), the primary NO receptor, triggers downstream signaling cascades by producing the second messenger cGMP. NO binds the sGC heme cofactor to stimulate cyclase activity, yet the molecular mechanisms of cyclase activation remain obscure. Although structural models of the individual sGC domains are available, the structure of the full sGC heterodimer is unknown. Understanding the higher-order domain architecture of sGC is a prerequisite to elucidating the mechanisms of NO activation. We used protein footprinting to map interdomain interaction surfaces of the sGC signaling domains. Hydrogen/deuterium exchange mass spectrometry revealed direct interactions between the Per/Arnt/Sim domain and the heme-associated signaling helix of the heme-NO/O2 binding (H-NOX) domain. Furthermore, interfaces between the H-NOX and catalytic domains were mapped using domain truncations and full-length sGC. The H-NOX domain buries surfaces of the α1 catalytic domain proximal to the cyclase active site, suggesting a signaling mechanism involving NO-induced derepression of catalytic activity. Together, our data reveal interdomain interactions responsible for communicating NO occupancy from H-NOX heme to the catalytic domain active site.


Asunto(s)
Guanilato Ciclasa/química , Guanilato Ciclasa/metabolismo , Modelos Moleculares , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/fisiología , Catálisis , GMP Cíclico/metabolismo , Medición de Intercambio de Deuterio , Cinética , Espectrometría de Masas , Óxido Nítrico/metabolismo , Estructura Terciaria de Proteína , Guanilil Ciclasa Soluble
10.
Proc Natl Acad Sci U S A ; 110(38): E3577-86, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003111

RESUMEN

Nitric oxide (NO) produced by NO synthase (NOS) participates in diverse physiological processes such as vasodilation, neurotransmission, and the innate immune response. Mammalian NOS isoforms are homodimers composed of two domains connected by an intervening calmodulin-binding region. The N-terminal oxidase domain binds heme and tetrahydrobiopterin and the arginine substrate. The C-terminal reductase domain binds FAD and FMN and the cosubstrate NADPH. Although several high-resolution structures of individual NOS domains have been reported, a structure of a NOS holoenzyme has remained elusive. Determination of the higher-order domain architecture of NOS is essential to elucidate the molecular underpinnings of NO formation. In particular, the pathway of electron transfer from FMN to heme, and the mechanism through which calmodulin activates this electron transfer, are largely unknown. In this report, hydrogen-deuterium exchange mass spectrometry was used to map critical NOS interaction surfaces. Direct interactions between the heme domain, the FMN subdomain, and calmodulin were observed. These interaction surfaces were confirmed by kinetic studies of site-specific interface mutants. Integration of the hydrogen-deuterium exchange mass spectrometry results with computational docking resulted in models of the NOS heme and FMN subdomain bound to calmodulin. These models suggest a pathway for electron transfer from FMN to heme and a mechanism for calmodulin activation of this critical step.


Asunto(s)
Calmodulina/química , Modelos Moleculares , Óxido Nítrico Sintasa de Tipo II/química , Conformación Proteica , Animales , Calmodulina/metabolismo , Medición de Intercambio de Deuterio , Dimerización , Transporte de Electrón , Electroforesis en Gel de Poliacrilamida , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Fluorescencia , Hemo/metabolismo , Espectrometría de Masas , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Especificidad de la Especie
11.
RSC Chem Biol ; 5(5): 447-453, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725907

RESUMEN

Pyk2 is a multi-domain non-receptor tyrosine kinase that serves dual roles as a signaling enzyme and scaffold. Pyk2 activation involves a multi-stage cascade of conformational rearrangements and protein interactions initiated by autophosphorylation of a linker site. Linker phosphorylation recruits Src kinase, and Src-mediated phosphorylation of the Pyk2 activation loop confers full activation. The regulation and accessibility of the initial Pyk2 autophosphorylation site remains unclear. We employed peptide-binding molecularly imprinted nanoparticles (MINPs) to probe the regulatory conformations controlling Pyk2 activation. MINPs differentiating local structure and phosphorylation state revealed that the Pyk2 autophosphorylation site is protected in the autoinhibited state. Activity profiling of Pyk2 variants implicated FERM and linker residues responsible for constraining the autophosphorylation site. MINPs targeting each Src docking site disrupt the higher-order kinase interactions critical for activation complex maturation. Ultimately, MINPs targeting key regulatory motifs establish a useful toolkit for probing successive activational stages in the higher-order Pyk2 signaling complex.

12.
J Biol Chem ; 287(51): 43053-62, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23093402

RESUMEN

Nitric oxide (NO) signaling regulates key processes in cardiovascular physiology, specifically vasodilation, platelet aggregation, and leukocyte rolling. Soluble guanylate cyclase (sGC), the mammalian NO sensor, transduces an NO signal into the classical second messenger cyclic GMP (cGMP). NO binds to the ferrous (Fe(2+)) oxidation state of the sGC heme cofactor and stimulates formation of cGMP several hundred-fold. Oxidation of the sGC heme to the ferric (Fe(3+)) state desensitizes the enzyme to NO. The heme-oxidized state of sGC has emerged as a potential therapeutic target in the treatment of cardiovascular disease. Here, we investigate the molecular mechanism of NO desensitization and find that sGC undergoes a reductive nitrosylation reaction that is coupled to the S-nitrosation of sGC cysteines. We further characterize the kinetics of NO desensitization and find that heme-assisted nitrosothiol formation of ß1Cys-78 and ß1Cys-122 causes the NO desensitization of ferric sGC. Finally, we provide evidence that the mechanism of reductive nitrosylation is gated by a conformational change of the protein. These results yield insights into the function and dysfunction of sGC in cardiovascular disease.


Asunto(s)
Guanilato Ciclasa/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Alquilación , Animales , Dominio Catalítico , Cisteína/metabolismo , Guanilato Ciclasa/química , Humanos , Hidróxidos/metabolismo , Cinética , Proteínas Mutantes/metabolismo , Nitrosación , Nucleótidos/metabolismo , Oxidación-Reducción , Unión Proteica , Ratas , Receptores Citoplasmáticos y Nucleares/química , Guanilil Ciclasa Soluble , Compuestos de Sulfhidrilo/metabolismo
13.
Structure ; 31(4): 447-454.e5, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870334

RESUMEN

Pyk2 is a multidomain non-receptor tyrosine kinase that undergoes a multistage activation mechanism. Activation is instigated by conformational rearrangements relieving autoinhibitory FERM domain interactions. The kinase autophosphorylates a central linker residue to recruit Src kinase. Pyk2 and Src mutually phosphorylate activation loops to confer full activation. While the mechanisms of autoinhibition are established, the conformational dynamics associated with autophosphorylation and Src recruitment remain unclear. We employ hydrogen/deuterium exchange mass spectrometry and kinase activity profiling to map the conformational dynamics associated with substrate binding and Src-mediated activation loop phosphorylation. Nucleotide engagement stabilizes the autoinhibitory interface, while phosphorylation deprotects both FERM and kinase regulatory surfaces. Phosphorylation organizes active site motifs linking catalytic loop with activation segment. Dynamics of the activation segment anchor propagate to EF/G helices to prevent reversion of the autoinhibitory FERM interaction. We employ targeted mutagenesis to dissect how phosphorylation-induced conformational rearrangements elevate kinase activity above the basal autophosphorylation rate.


Asunto(s)
Quinasa 2 de Adhesión Focal , Tirosina , Fosforilación , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/química , Quinasa 2 de Adhesión Focal/metabolismo , Tirosina/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Conformación Molecular
14.
Nat Commun ; 12(1): 4950, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400635

RESUMEN

Upon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.


Asunto(s)
Receptores de Activinas Tipo I/química , Receptores de Activinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/química , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Transducción de Señal/fisiología , Receptores de Activinas Tipo I/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proteínas Morfogenéticas Óseas/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , Ligandos , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Dominios Proteicos , Hipertensión Arterial Pulmonar , Dispersión del Ángulo Pequeño , Transducción de Señal/genética , Proteínas Smad/metabolismo , Difracción de Rayos X
16.
J Mol Biol ; 430(7): 935-947, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29458127

RESUMEN

Nitric oxide synthase (NOS) is the primary generator of nitric oxide signals controlling diverse physiological processes such as neurotransmission and vasodilation. NOS activation is contingent on Ca2+/calmodulin binding at a linker between its oxygenase and reductase domains to induce large conformational changes that orchestrate inter-domain electron transfer. However, the structural dynamics underlying activation of full-length NOS remain ambiguous. Employing hydrogen-deuterium exchange mass spectrometry, we reveal mechanisms underlying neuronal NOS activation by calmodulin and regulation by phosphorylation. We demonstrate that calmodulin binding orders the junction between reductase and oxygenase domains, exposes the FMN subdomain, and elicits a more dynamic oxygenase active site. Furthermore, we demonstrate that phosphorylation partially mimics calmodulin activation to modulate neuronal NOS activity via long-range allostery. Calmodulin binding and phosphorylation ultimately promote a more dynamic holoenzyme while coordinating inter-domain communication and electron transfer.


Asunto(s)
Calmodulina/metabolismo , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Regulación Alostérica , Dominio Catalítico , Medición de Intercambio de Deuterio , Activación Enzimática , Humanos , Conformación Proteica
17.
Structure ; 22(4): 602-11, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24560804

RESUMEN

Soluble guanylate cyclase (sGC) is the primary mediator of nitric oxide (NO) signaling. NO binds the sGC heme cofactor stimulating synthesis of the second messenger cyclic-GMP (cGMP). As the central hub of NO/cGMP signaling pathways, sGC is important in diverse physiological processes such as vasodilation and neurotransmission. Nevertheless, the mechanisms underlying NO-induced cyclase activation in sGC remain unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to probe the NO-induced conformational changes of sGC. HDX-MS revealed NO-induced effects in several discrete regions. NO binding to the heme-NO/O2-binding (H-NOX) domain perturbs a signaling surface implicated in Per/Arnt/Sim (PAS) domain interactions. Furthermore, NO elicits striking conformational changes in the junction between the PAS and helical domains that propagate as perturbations throughout the adjoining helices. Ultimately, NO binding stimulates the catalytic domain by contracting the active site pocket. Together, these conformational changes delineate an allosteric pathway linking NO binding to activation of the catalytic domain.


Asunto(s)
GMP Cíclico/química , Guanilato Ciclasa/química , Óxido Nítrico/química , Subunidades de Proteína/química , Receptores Citoplasmáticos y Nucleares/química , Secuencia de Aminoácidos , Dominio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Guanilato Ciclasa/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Guanilil Ciclasa Soluble
19.
J Mol Biol ; 409(4): 483-95, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21463637

RESUMEN

Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization--circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application--they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.


Asunto(s)
Proteínas de Escherichia coli/química , Marcaje Isotópico/métodos , Huella de Proteína/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Quimiotaxis/fisiología , Cisteína/química , Escherichia coli/fisiología , Proteínas de Escherichia coli/metabolismo , Histidina Quinasa , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Moleculares , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
20.
J Am Chem Soc ; 127(42): 14536-7, 2005 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-16231882

RESUMEN

We report a general method for the solid-phase synthesis of polymers via the ring-opening metathesis polymerization (ROMP). The method involves polymerization in solution to form a block copolymer, immobilization of the polymer via reaction of one block with a resin-bound functional group, modification of the other block, and liberation of the polymer from the resin. We demonstrated the utility of this approach by generating a block copolymer with an N-hydroxysuccinimidyl ester-substituted block (for on-resin functionalization) and a maleimide-substituted block (for conjugation to the resin). We showed that the Diels-Alder reaction can be employed to immobilize the polymers and that amines of diverse structure can be used to modify the resin-bound polymers. The reversibility of the furan-maleimide Diels-Alder adduct was exploited to liberate the polymer from the support. Specifically, treatment of the resin with cyclopentadiene resulted in complete polymer release. The resulting polymers are functional: they were as potent in assays with the lectin concanavalin A as polymers generated by traditional solution routes. We anticipate that this method can be used for the rapid synthesis of diverse polymers via ROMP.


Asunto(s)
Polímeros/síntesis química , Ésteres/química , Inmovilización , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA