Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Am Chem Soc ; 146(12): 8280-8297, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38467029

RESUMEN

Single-site copper-based catalysts have shown remarkable activity and selectivity for a variety of reactions. However, deactivation by sintering in high-temperature reducing environments remains a challenge and often limits their use due to irreversible structural changes to the catalyst. Here, we report zeolite-based copper catalysts in which copper oxide agglomerates formed after reaction can be repeatedly redispersed back to single sites using an oxidative treatment in air at 550 °C. Under different environments, single-site copper in Cu-Zn-Y/deAlBeta undergoes dynamic changes in structure and oxidation state that can be tuned to promote the formation of key active sites while minimizing deactivation through Cu sintering. For example, single-site Cu2+ reduces to Cu1+ after catalyst pretreatment (270 °C, 101 kPa H2) and further to Cu0 nanoparticles under reaction conditions (270-350 °C, 7 kPa EtOH, 94 kPa H2) or accelerated aging (400-450 °C, 101 kPa H2). After regeneration at 550 °C in air, agglomerated CuO was dispersed back to single sites in the presence and absence of Zn and Y, which was verified by imaging, in situ spectroscopy, and catalytic rate measurements. Ab initio molecular dynamics simulations show that solvation of CuO monomers by water facilitates their transport through the zeolite pore, and condensation of the CuO monomer with a fully protonated silanol nest entraps copper and reforms the single-site structure. The capability of silanol nests to trap and stabilize copper single sites under oxidizing conditions could extend the use of single-site copper catalysts to a wider variety of reactions and allows for a simple regeneration strategy for copper single-site catalysts.

2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33723013

RESUMEN

With the increasing demand for net-zero sustainable aviation fuels (SAF), new conversion technologies are needed to process waste feedstocks and meet carbon reduction and cost targets. Wet waste is a low-cost, prevalent feedstock with the energy potential to displace over 20% of US jet fuel consumption; however, its complexity and high moisture typically relegates its use to methane production from anaerobic digestion. To overcome this, methanogenesis can be arrested during fermentation to instead produce C2 to C8 volatile fatty acids (VFA) for catalytic upgrading to SAF. Here, we evaluate the catalytic conversion of food waste-derived VFAs to produce n-paraffin SAF for near-term use as a 10 vol% blend for ASTM "Fast Track" qualification and produce a highly branched, isoparaffin VFA-SAF to increase the renewable blend limit. VFA ketonization models assessed the carbon chain length distributions suitable for each VFA-SAF conversion pathway, and food waste-derived VFA ketonization was demonstrated for >100 h of time on stream at approximately theoretical yield. Fuel property blending models and experimental testing determined normal paraffin VFA-SAF meets 10 vol% fuel specifications for "Fast Track." Synergistic blending with isoparaffin VFA-SAF increased the blend limit to 70 vol% by addressing flashpoint and viscosity constraints, with sooting 34% lower than fossil jet. Techno-economic analysis evaluated the major catalytic process cost-drivers, determining the minimum fuel selling price as a function of VFA production costs. Life cycle analysis determined that if food waste is diverted from landfills to avoid methane emissions, VFA-SAF could enable up to 165% reduction in greenhouse gas emissions relative to fossil jet.


Asunto(s)
Biocombustibles , Ácidos Grasos Volátiles/metabolismo , Alimentos , Eliminación de Residuos , Aviación , Catálisis , Gases de Efecto Invernadero , Metano
3.
Microsc Microanal ; 26(2): 229-239, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32157982

RESUMEN

Protocols for conducting in situ transmission electron microscopy (TEM) reactions using an environmental TEM with dry gases have been well established. However, many important reactions that are relevant to catalysis or high-temperature oxidation occur at atmospheric pressure and are influenced by the presence of water vapor. These experiments necessitate using a closed-cell gas reaction TEM holder. We have developed protocols for introducing and controlling water vapor concentrations in experimental gases from 2% at a full atmosphere to 100% at ~17 Torr, while measuring the gas composition using a residual gas analyzer (RGA) on the return side of the in situ gas reactor holder. Initially, as a model system, cube-shaped MgO crystals were used to help develop the protocols for handling the water vapor injection process and confirming that we could successfully inject water vapor into the gas cell. The interaction of water vapor with MgO triggered surface morphological and chemical changes as a result of the formation of Mg(OH)2, later validated with mass spectra obtained with our RGA system with and without water vapor. Integrating an RGA with an in situ scanning/TEM closed-cell gas reaction system can thus provide critical measurements correlating gas composition with dynamic surface restructuring of materials during reactions.

4.
Microsc Microanal ; 29(Supplement_1): 1566-1568, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613667
7.
Microsc Microanal ; 23(2): 396-403, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28318469

RESUMEN

This study applies atom probe tomography (APT) to analyze the oxide scales formed on model NiAlCr alloys doped with Hf, Y, Ti, and B. Due to its ability to measure small amounts of alloying elements in the oxide matrix and its ability to quantify segregation, the technique offers a possibility for detailed studies of the dopant's fate during high-temperature oxidation. Three model NiAlCr alloys with different additions of Hf, Y, Ti, and B were prepared and oxidized in O2 at 1,100°C for 100 h. All specimens showed an outer region consisting of different spinel oxides with relatively small grains and the protective Al2O3-oxide layer below. APT analyses focused mainly on this protective oxide layer. In all the investigated samples segregation of both Hf and Y to the oxide grain boundaries was observed and quantified. Neither B nor Ti were observed in the alumina grains or at the analyzed interfaces. The processes of formation of oxide scales and segregation of the alloying elements are discussed. The experimental challenges of the oxide analyses by APT are also addressed.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38602421

RESUMEN

Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis(trifluoromethylsulfonyl)imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2-3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.

9.
Adv Mater ; 33(31): e2100347, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34173281

RESUMEN

High-entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high-entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five-component alloy with the highest configurational entropy, (MoWVNbTa)S2 , is investigated for CO2 conversion to CO, revealing an excellent current density of 0.51 A cm-2 and a turnover frequency of 58.3 s-1 at ≈ -0.8 V versus reversible hydrogen electrode. First-principles calculations show that the superior CO2 electroreduction is due to a multi-site catalysis wherein the atomic-scale disorder optimizes the rate-limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high-entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems.

10.
J Vis Exp ; (173)2021 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-34369934

RESUMEN

Gas reactions studied by in situ electron microscopy can be used to capture the real-time morphological and microchemical transformations of materials at length scales down to the atomic level. In situ closed-cell gas reaction (CCGR) studies performed using (scanning) transmission electron microscopy (STEM) can separate and identify localized dynamic reactions, which are extremely challenging to capture using other characterization techniques. For these experiments, we used a CCGR holder that utilizes microelectromechanical systems (MEMS)-based heating microchips (hereafter referred to as "E-chips"). The experimental protocol described here details the method for performing in situ gas reactions in dry and wet gases in an aberration-corrected STEM. This method finds relevance in many different materials systems, such as catalysis and high-temperature oxidation of structural materials at atmospheric pressure and in the presence of various gases with or without water vapor. Here, several sample preparation methods are described for various material form factors. During the reaction, mass spectra obtained with a residual gas analyzer (RGA) system with and without water vapor further validates gas exposure conditions during reactions. Integrating an RGA with an in situ CCGR-STEM system can, therefore, provide critical insight to correlate gas composition with the dynamic surface evolution of materials during reactions. In situ/operando studies using this approach allow for detailed investigation of the fundamental reaction mechanisms and kinetics that occur at specific environmental conditions (time, temperature, gas, pressure), in real-time, and at high spatial resolution.


Asunto(s)
Gases , Microscopía Electrónica , Microscopía Electrónica de Transmisión de Rastreo , Oxidación-Reducción , Temperatura
11.
Nat Nanotechnol ; 15(6): 475-481, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32483321

RESUMEN

High-capacity alloy anode materials for Li-ion batteries have long been held back by limited cyclability caused by the large volume changes during lithium insertion and removal. Hollow and yolk-shell nanostructures have been used to increase the cycling stability by providing an inner void space to accommodate volume changes and a mechanically and dimensionally stable outer surface. These materials, however, require complex synthesis procedures. Here, using in situ transmission electron microscopy, we show that sufficiently small antimony nanocrystals spontaneously form uniform voids on the removal of lithium, which are then reversibly filled and vacated during cycling. This behaviour is found to arise from a resilient native oxide layer that allows for an initial expansion during lithiation but mechanically prevents shrinkage as antimony forms voids during delithiation. We developed a chemomechanical model that explains these observations, and we demonstrate that this behaviour is size dependent. Thus, antimony naturally evolves to form optimal nanostructures for alloy anodes, as we show through electrochemical experiments in a half-cell configuration in which 15-nm antimony nanocrystals have a consistently higher Coulombic efficiency than larger nanoparticles.

12.
ACS Sustain Chem Eng ; 8(32): 12151-12160, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38435970

RESUMEN

Oxymethylene dimethyl ethers (OMEs), CH3-(OCH2)n-OCH3, n = 1-5, possess attractive low-soot diesel fuel properties. Methanol is a key precursor in the production of OMEs, providing an opportunity to incorporate renewable carbon sources via gasification and methanol synthesis. The costly production of anhydrous formaldehyde in the typical process limits this option. In contrast, the direct production of OMEs via a dehydrogenative coupling (DHC) reaction, where formaldehyde is produced and consumed in a single reactor, may address this limitation. We report the gas-phase DHC reaction of methanol to dimethoxymethane (DMM), the simplest OME, with n = 1, over bifunctional metal-acid catalysts based on Cu. A Cu-zirconia-alumina (Cu/ZrAlO) catalyst achieved 40% of the DMM equilibrium-limited yield under remarkably mild conditions (200 °C, 1.7 atm). The performance of the Cu/ZrAlO catalyst was attributed to metallic Cu nanoparticles that enable dehydrogenation and a distribution of acid strengths on the ZrAlO support, which reduced the selectivity to dimethyl ether compared to a that obtained with a Cu/Al2O3 catalyst. The DMM formation rate of 6.1 h-1 compares favorably against well-studied oxidative DHC approaches over non-noble, mixed-metal oxide catalysts. The results reported here set the foundation for further development of the DHC route to OME production, rather than oxidative approaches.

13.
Micron ; 109: 41-52, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29635074

RESUMEN

A thermally grown scale formed on a cast NiCrAl model alloy doped with lanthanum, hafnium, and titanium was examined after isothermal exposure at 1100 °C for 100 h in dry flowing O2 to understand the dopant segregation along scale grain boundaries. The complex scale formed on the alloy surface was composed of two types of substrates: phase-dependent, thin (<250 nm) outer layers and a columnar-grained ∼3.5 µm inner alumina layer. Two types of oxides formed between the inner and outer scale layers: small (3-15 nm) La2O3 and larger (≤50 nm) HfO2 oxide precipitates. Nonuniform distributions of the hafnium, lanthanum, and titanium dopants were observed along the inner scale grain boundaries, with hafnium dominating in most of the grain boundaries of α-Al2O3. The concentration of reactive elements (RE) seemed to strongly depend on the grain boundary structure. The level of titanium grain boundary segregation in the inner scale decreased toward the model alloy (substrate), confirming the fast outward diffusion of titanium. Hafnium was also observed at the metal-scale interface and in the γ' (Ni3Al) phase of the alloy. High-resolution scanning transmission electron microscopy (STEM) confirmed the substitution of REs for aluminum atoms at the scale grain boundaries, consistent with both the semiconducting band structure and the site-blocking models. Both STEM and atom probe tomography allowed quantification of REs along the scale grain boundaries across the scale thickness. Analysis of the scale morphology after isothermal exposure in flowing oxygen revealed a myriad of new precipitate phases, RE segregation dependence on grain boundary type, and atomic arrangement along scale grain boundaries, which is expected to influence the scale growth rate, stability, and mechanical properties.

14.
Chem Commun (Camb) ; 51(91): 16377-80, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404766

RESUMEN

We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

15.
ACS Appl Mater Interfaces ; 7(19): 10115-24, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25905666

RESUMEN

Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures, including alloy formation, crystallite growth, and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relatively high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm(2)) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm(2)) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm(2)) at 0.65 V vs RHE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA