Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364241

RESUMEN

Nanoformulations for delivering nucleotides into cells as vaccinations as well as treatment of various diseases have recently gained great attention. Applying such formulations for a local treatment strategy, e.g., for cancer therapy, is still a challenge, for which improved delivery concepts are needed. Hence, this work focuses on the synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) for a prospective "magnetofection" application. By functionalizing SPIONs with an active catechol ester (CafPFP), polyethyleneimine (PEI) was covalently bound to their surface while preserving the desired nanosized particle properties with a hydrodynamic size of 86 nm. When complexed with plasmid-DNA (pDNA) up to a weight ratio of 2.5% pDNA/Fe, no significant changes in particle properties were observed, while 95% of the added pDNA was strongly bound to the SPION surface. The transfection in A375-M cells for 48 h with low amounts (10 ng) of pDNA, which carried a green fluorescent protein (GFP) sequence, resulted in a transfection efficiency of 3.5%. This value was found to be almost 3× higher compared to Lipofectamine (1.2%) for such low pDNA amounts. The pDNA-SPION system did not show cytotoxic effects on cells for the tested particle concentrations and incubation times. Through the possibility of additional covalent functionalization of the SPION surface as well as the PEI layer, Caf-PEI-SPIONs might be a promising candidate as a magnetofection agent in future.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro , Polietileneimina , Estudios Prospectivos , Plásmidos/genética , Transfección , ADN
2.
Small ; 16(31): e2000746, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32567135

RESUMEN

Metal-based nanoparticles are clinically used for diagnostic and therapeutic applications. After parenteral administration, they will distribute throughout different organs. Quantification of their distribution within tissues in the 3D space, however, remains a challenge owing to the small particle diameter. In this study, synchrotron radiation-based hard X-ray tomography (SRµCT) in absorption and phase contrast modes is evaluated for the localization of superparamagnetic iron oxide nanoparticles (SPIONs) in soft tissues based on their electron density and X-ray attenuation. Biodistribution of SPIONs is studied using zebrafish embryos as a vertebrate screening model. This label-free approach gives rise to an isotropic, 3D, direct space visualization of the entire 2.5 mm-long animal with a spatial resolution of around 2 µm. High resolution image stacks are available on a dedicated internet page (http://zebrafish.pharma-te.ch). X-ray tomography is combined with physico-chemical characterization and cellular uptake studies to confirm the safety and effectiveness of protective SPION coatings. It is demonstrated that SRµCT provides unprecedented insights into the zebrafish embryo anatomy and tissue distribution of label-free metal oxide nanoparticles.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas del Metal , Animales , Óxidos , Distribución Tisular , Tomografía Computarizada por Rayos X , Pez Cebra
3.
Molecules ; 25(19)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993144

RESUMEN

Surface-functionalized gold-coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) may be a useful tool in various biomedical applications. To obtain Au-SPIONs, gold salt was precipitated onto citrate-stabilized SPIONs (Cit-SPIONs) using a simple, aqueous one-pot technique inspired by the Turkevich method of gold nanoparticle synthesis. By the further stabilization of the Au-SPION surface with additional citrate (Cit-Au-SPIONs), controllable and reproducible Z-averages enhanced long-term dispersion stability and moderate dispersion pH values were achieved. The citrate concentration of the reaction solution and the gold/iron ratio was found to have a major influence on the particle characteristics. While the gold-coating reduced the saturation magnetization to 40.7% in comparison to pure Cit-SPIONs, the superparamagnetic behavior of Cit-Au-SPIONs was maintained. The formation of nanosized gold on the SPION surface was confirmed by X-ray diffraction measurements. Cit-Au-SPION concentrations of up to 100 µg Fe/mL for 48 h had no cytotoxic effect on Jurkat cells. At a particle concentration of 100 µg Fe/mL, Jurkat cells were found to take up Cit-Au-SPIONs after 24 h of incubation. A significantly higher attachment of thiol-containing L-cysteine to the particle surface was observed for Cit-Au-SPIONs (53%) in comparison to pure Cit-SPIONs (7%).


Asunto(s)
Ácido Cítrico , Materiales Biocompatibles Revestidos , Oro , Nanopartículas de Magnetita/química , Ensayo de Materiales , Ácido Cítrico/química , Ácido Cítrico/farmacología , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Oro/química , Oro/farmacología , Humanos , Células Jurkat
4.
Molecules ; 24(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315293

RESUMEN

Magnetic drug targeting utilizes an external magnetic field to target superparamagnetic iron oxide nanoparticles (SPIONs) and their cargo to the diseased vasculature regions. In the arteries, the flow conditions affect the behavior of magnetic particles and the efficacy of their accumulation. In order to estimate the magnetic capture of SPIONs in more physiological-like settings, we previously established an ex vivo model based on human umbilical cord arteries. The artery model was employed in our present studies in order to analyze the effects of the blood components on the efficacy of magnetic targeting, utilizing 2 types of SPIONs with different physicochemical characteristics. In the presence of freshly isolated human plasma or whole blood, a strong increase in iron content measured by AES was observed for both particle types along the artery wall, in parallel with clotting activation due to endogenous thrombin generation in plasma. Subsequent studies therefore utilized SPION suspensions in serum and washed red blood cells (RBCs) at hematocrit 50%. Interestingly, in contrast to cell culture medium suspensions, magnetic accumulation of circulating SPION-3 under the external magnet was achieved in the presence of RBCs. Taken together, our data shows that the presence of blood components affects, but does not prevent, the magnetic accumulation of circulating SPIONs.


Asunto(s)
Eritrocitos/química , Nanopartículas de Magnetita/análisis , Suero/química , Óxido Ferrosoférrico , Humanos , Fenómenos Magnéticos , Modelos Biológicos , Arterias Umbilicales/fisiología
5.
Int J Mol Sci ; 18(7)2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28661430

RESUMEN

The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient's body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Administración Intravenosa , Antracenos , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Células HT29 , Humanos , Células Jurkat , Leucemia de Células T/tratamiento farmacológico , Leucemia de Células T/metabolismo , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/química , Perileno/farmacocinética , Perileno/farmacología , Fármacos Fotosensibilizantes/farmacocinética , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
6.
Int J Mol Sci ; 18(9)2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837060

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted great attention in many biomedical fields and are used in preclinical/experimental drug delivery, hyperthermia and medical imaging. In this study, biocompatible magnetite drug carriers, stabilized by a dextran shell, were developed to carry tissue plasminogen activator (tPA) for targeted thrombolysis under an external magnetic field. Different concentrations of active tPA were immobilized on carboxylated nanoparticles through carbodiimide-mediated amide bond formation. Evidence for successful functionalization of SPIONs with carboxyl groups was shown by Fourier transform infrared spectroscopy. Surface properties after tPA immobilization were altered as demonstrated by dynamic light scattering and ζ potential measurements. The enzyme activity of SPION-bound tPA was determined by digestion of fibrin-containing agarose gels and corresponded to about 74% of free tPA activity. Particles were stored for three weeks before a slight decrease in activity was observed. tPA-loaded SPIONs were navigated into thrombus-mimicking gels by external magnets, proving effective drug targeting without losing the protein. Furthermore, all synthesized types of nanoparticles were well tolerated in cell culture experiments with human umbilical vein endothelial cells, indicating their potential utility for future therapeutic applications in thromboembolic diseases.


Asunto(s)
Compuestos Férricos , Fibrinolíticos/administración & dosificación , Fibrinolíticos/síntesis química , Nanopartículas de Magnetita , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Tejido Plasminógeno/síntesis química , Dextranos/química , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Células Endoteliales , Compuestos Férricos/química , Fibrinólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
7.
Biochem Biophys Res Commun ; 468(3): 463-70, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26271592

RESUMEN

Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles.


Asunto(s)
Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/administración & dosificación , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/efectos de la radiación , Nanocápsulas/química , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/efectos de la radiación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/efectos de la radiación , Humanos , Campos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Nanocápsulas/administración & dosificación , Nanocápsulas/efectos de la radiación
8.
Int J Mol Sci ; 16(11): 26280-90, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26540051

RESUMEN

Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEON(LA-BSA)), or with dextran (SEON(DEX)). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEON(LA-BSA), SEON(DEX) or SEON(LA). Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.


Asunto(s)
Dextranos/toxicidad , Compuestos Férricos/toxicidad , Células de la Granulosa/efectos de los fármacos , Nanopartículas de Magnetita/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dextranos/metabolismo , Femenino , Compuestos Férricos/metabolismo , Células de la Granulosa/metabolismo , Humanos , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Pruebas de Mutagenicidad
9.
Molecules ; 20(10): 18016-30, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26437393

RESUMEN

Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT) employing superparamagnetic iron oxide nanoparticles (SPION) loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of nanomedicine from bench to bedside, nanoparticle-mediated effects have to be studied carefully. In this study, we compare the effect of SPION, unloaded or loaded with the cytotoxic drug mitoxantrone (MTO) with the effect of free MTO, on the viability and proliferation of HT-29 cells within three-dimensional multicellular tumor spheroids. Fluorescence microscopy and flow cytometry showed that both free MTO, as well as SPION-loaded MTO (SPION(MTO)) are able to penetrate into tumor spheroids and thereby kill tumor cells, whereas unloaded SPION did not affect cellular viability. Since SPION(MTO) has herewith proven its effectivity also in complex multicellular tumor structures with its surrounding microenvironment, we conclude that it is a promising candidate for further use in magnetic drug targeting in vivo.


Asunto(s)
Antineoplásicos/farmacología , Nanopartículas de Magnetita , Mitoxantrona/farmacología , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Mitoxantrona/administración & dosificación , Esferoides Celulares , Células Tumorales Cultivadas
10.
Int J Nanomedicine ; 19: 1645-1666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406599

RESUMEN

Purpose: In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods: The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results: Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion: Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.


Asunto(s)
Aterosclerosis , Compuestos Férricos , Ferrocianuros , Nanopartículas de Magnetita , Placa Aterosclerótica , Conejos , Ratas , Animales , Medios de Contraste/química , Placa Aterosclerótica/inducido químicamente , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Óxido Ferrosoférrico , Nanopartículas de Magnetita/química , Aterosclerosis/inducido químicamente , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Imagen por Resonancia Magnética/métodos
11.
RSC Adv ; 13(23): 15730-15736, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37235104

RESUMEN

Magnetic particle imaging (MPI) is an imaging modality to quantitatively determine the three-dimensional distribution of magnetic nanoparticles (MNPs) administered as a tracer into a biological system. Magnetic particle spectroscopy (MPS) is the zero-dimensional MPI counterpart without spatial coding but with much higher sensitivity. Generally, MPS is employed to qualitatively evaluate the MPI capability of tracer systems from the measured specific harmonic spectra. Here, we investigated the correlation of three characteristic MPS parameters with the achievable MPI resolution from a recently introduced procedure based on a two-voxel-analysis of data taken from the system function acquisition that is mandatory in Lissajous scanning MPI. We evaluated nine different tracer systems and determined their MPI capability and resolution from MPS measurements and compared the results with MPI phantom measurements.

12.
Antioxidants (Basel) ; 12(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37627612

RESUMEN

Nanoparticle-based therapeutics are being clinically translated for treating cancer. Even when thought to be biocompatible, nanoparticles are being increasingly identified as altering cell regulation and homeostasis. Antioxidant pathways are important for maintaining cell redox homeostasis and play important roles by maintaining ROS levels within tolerable ranges. Here, we sought to understand how a model of a relatively inert nanoparticle without any therapeutic agent itself could antagonize a cancer cell lines' antioxidant mechanism. A label-free protein expression approach was used to assess the glutathione-thioredoxin antioxidative pathway in a prostate cancer cell line (PC-3) after exposure to gold nanoparticles conjugated with a targeting moiety (transferrin). The impact of the nanoparticles was also corroborated through morphological analysis with TEM and classification of pro-apoptotic cells by way of the sub-G0/G1 population via the cell cycle and annexin V apoptosis assay. After a two-hour exposure to nanoparticles, major proteins associated with the glutathione-thioredoxin antioxidant pathway were downregulated. However, this response was acute, and in terms of protein expression, cells quickly recovered within 24 h once nanoparticle exposure ceased. The impact on PRDX-family proteins appears as the most influential factor in how these nanoparticles induced an oxidative stress response in the PC-3 cells. An apparent adaptive response was observed if exposure to nanoparticles continued. Acute exposure was observed to have a detrimental effect on cell viability compared to continuously exposed cells. Nanoparticle effects on cell regulation likely provide a compounding therapeutic advantage under some circumstances, in addition to the action of any cytotoxic agents; however, any therapeutic advantage offered by nanoparticles themselves with regard to vulnerabilities specific to the glutathione-thioredoxin antioxidative pathway is highly temporal.

13.
Int J Nanomedicine ; 18: 2071-2086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113796

RESUMEN

Introduction: One of the major challenges in the clinical translation of nanoparticles is the development of formulations combining favorable efficacy and optimal safety. In the past, iron oxide nanoparticles have been introduced as an alternative for gadolinium-containing contrast agents; however, candidates available at the time were not free from adverse effects. Methods: Following the development of a potent iron oxide-based contrast agent SPIONDex, we now performed a systematic comparison of this formulation with the conventional contrast agent ferucarbotran and with ferumoxytol, taking into consideration their physicochemical characteristics, bio- and hemocompatibility in vitro and in vivo, as well as their liver imaging properties in rats. Results: The results demonstrated superior in vitro cyto-, hemo- and immunocompatibility of SPIONDex in comparison to the other two formulations. Intravenous administration of ferucarbotran or ferumoxytol induced strong complement activation-related pseudoallergy in pigs. In contrast, SPIONDex did not elicit any hypersensitivity reactions in the experimental animals. In a rat model, comparable liver imaging properties, but a faster clearance was demonstrated for SPIONDex. Conclusion: The results indicate that SPIONDex possess an exceptional safety compared to the other two formulations, making them a promising candidate for further clinical translation.


Asunto(s)
Medios de Contraste , Nanopartículas de Magnetita , Ratas , Animales , Porcinos , Óxido Ferrosoférrico , Seguridad del Paciente , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/toxicidad
14.
Front Immunol ; 14: 1223695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662937

RESUMEN

Background: Immunotherapy of cancer is an emerging field with the potential to improve long-term survival. Thus far, adoptive transfer of tumor-specific T cells represents an effective treatment option for tumors of the hematological system such as lymphoma, leukemia or myeloma. However, in solid tumors, treatment efficacy is low owing to the immunosuppressive microenvironment, on-target/off-tumor toxicity, limited extravasation out of the blood vessel, or ineffective trafficking of T cells into the tumor region. Superparamagnetic iron oxide nanoparticles (SPIONs) can make cells magnetically controllable for the site-specific enrichment. Methods: In this study, we investigated the influence of SPION-loading on primary human T cells for the magnetically targeted adoptive T cell therapy. For this, we analyzed cellular mechanics and the T cell response after stimulation via an exogenous T cell receptor (TCR) specific for the melanoma antigen MelanA or the endogenous TCR specific for the cytomegalovirus antigen pp65 and compared them to T cells that had not received SPIONs. Results: SPION-loading of human T cells showed no influence on cellular mechanics, therefore retaining their ability to deform to external pressure. Additionally, SPION-loading did not impair the T cell proliferation, expression of activation markers, cytokine secretion, and tumor cell killing after antigen-specific activation mediated by the TCR. Conclusion: In summary, we demonstrated that SPION-loading of T cells did not affect cellular mechanics or the functionality of the endogenous or an exogenous TCR, which allows future approaches using SPIONs for the magnetically enrichment of T cells in solid tumors.


Asunto(s)
Leucemia , Mieloma Múltiple , Humanos , Receptores de Antígenos de Linfocitos T , Activación de Linfocitos , Nanopartículas Magnéticas de Óxido de Hierro , Microambiente Tumoral
15.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615924

RESUMEN

Dextran-coated superparamagnetic iron oxide nanoparticles (SPIONDex) of various sizes can be used as contrast agents in magnetic resonance imaging (MRI) of different tissues, e.g., liver or atherosclerotic plaques, after intravenous injection. In previous studies, the blood compatibility and the absence of immunogenicity of SPIONDex was demonstrated. The investigation of the interference of SPIONDex with stimulated immune cell activation is the aim of this study. For this purpose, sterile and endotoxin-free SPIONDex with different hydrodynamic sizes (30 and 80 nm) were investigated for their effect on monocytes, dendritic cells (DC) and lymphocytes in concentrations up to 200 µg/mL, which would be administered for use as an imaging agent. The cells were analyzed using flow cytometry and brightfield microscopy. We found that SPIONDex were hardly taken up by THP-1 monocytes and did not reduce cell viability. In the presence of SPIONDex, the phagocytosis of zymosan and E. coli by THP-1 was dose-dependently reduced. SPIONDex neither induced the maturation of DCs nor interfered with their stimulated maturation. The particles did not induce lymphocyte proliferation or interfere with lymphocyte proliferation after stimulation. Since SPIONDex rapidly distribute via the blood circulation in vivo, high concentrations were only reached locally at the injection site immediately after application and only for a very limited time. Thus, SPIONDex can be considered immune compatible in doses required for use as an MRI contrast agent.

16.
Acta Biomater ; 141: 418-428, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34999260

RESUMEN

Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1ß, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.


Asunto(s)
Sepsis , Staphylococcus aureus , Antibacterianos/farmacología , Bacterias/metabolismo , Citocinas/metabolismo , Escherichia coli/metabolismo , Humanos , Fenómenos Magnéticos , Péptidos/uso terapéutico , Pseudomonas aeruginosa , Sepsis/tratamiento farmacológico , Staphylococcus aureus/metabolismo
17.
Front Immunol ; 12: 761816, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095840

RESUMEN

Neutrophil extracellular trap (NET) formation is a powerful instrument to fight pathogens, but may induce collateral damage in the affected tissues. Besides pathogen-derived factors, immune complexes are potent inducers of NET formation. Neutrophils express IgA and IgG specific Fc receptors (FcRs) and therefore respond to complexed IgA and IgG. Especially in the context of autoimmune diseases, IgA and IgG immune complexes have been shown to trigger NET formation, a process that putatively contributes to disease severity. However, it is of question if both antibody classes stimulate neutrophils to the same extent. In this study, we compared the capability of IgA and IgG complexes formed by heat aggregation to induce NET formation. While stimulation of neutrophils with IgA complexes robustly induced NET formation, complexed IgG only marginally increased the amount of NETs compared to the unstimulated control. Mixing IgA with IgG before heat aggregation did not increase the effect of complexed IgA on neutrophils. By contrast, the presence of IgG complexes seemed to disturb neutrophil stimulation by IgA complexes. The capacity of complexed IgG to induce NET formation could not be increased by the addition of autologous serum or the removal of terminal sialic acid in the Fc glycan. Together, our data show that IgA is a much more potent inducer of NET formation than IgG. IgA may thus be the main driving force in (auto)immune complex-mediated NET formation.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Trampas Extracelulares/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Neutrófilos/inmunología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores Fc/inmunología , Adulto Joven
18.
Nanomaterials (Basel) ; 11(3)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805818

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) feature distinct magnetic properties that make them useful and effective tools for various diagnostic, therapeutic and theranostic applications. In particular, their use in magnetic drug targeting (MDT) promises to be an effective approach for the treatment of various diseases such as cancer. At the cellular level, SPION uptake, along with SPION-mediated toxicity, represents the most important prerequisite for successful application. Thus, the present study determines SPION uptake, toxicity and biocompatibility in human head and neck tumor cell lines of the tongue, pharynx and salivary gland. Using magnetic susceptibility measurements, microscopy, atomic emission spectroscopy, flow cytometry, and plasma coagulation, we analyzed the magnetic properties, cellular uptake and biocompatibility of two different SPION types in the presence and absence of external magnetic fields. Incubation of cells with lauric acid and human serum albumin-coated nanoparticles (SPIONLA-HSA) resulted in substantial particle uptake with low cytotoxicity. In contrast, uptake of lauric acid-coated nanoparticles (SPIONLA) was substantially increased but accompanied by higher toxicity. The presence of an external magnetic field significantly increased cellular uptake of both particles, although cytotoxicity was not significantly increased in any of the cell lines. SPIONs coated with lauric acid and/or human serum albumin show different patterns of uptake and toxicity in response to an external magnetic field. Consequently, the results indicate the potential use of SPIONs as vehicles for MDT in head and neck cancer.

19.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796757

RESUMEN

Cytotoxic and cytostatic chemotherapeutics act by attacking rapidly dividing tumor cells, predominantly affecting malignant tissue and to a certain degree preserving healthy cells. Nonetheless, severe side effects are caused as quickly proliferating healthy cells such as hematopoietic precursors and mucous membranes are impaired as well. This limits the administered dose and eventually allows tumor cells to escape treatment. In order to increase intratumoral drug concentration and simultaneously reduce systemic side effects, nanoparticles have come into focus as drug carriers. The functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with chemotherapeutics such as mitoxantrone (MTO) enables targeted drug transport by using magnetic forces. Here, we investigate SPIONs consisting of individual iron oxide cores of 10 nm in diameter and a total hydrodynamic diameter of 53 ± 0.8 nm as a transporting system for MTO. Comparing the killing efficacy in monolayer cell culture and multicellular tumor spheroids of HT-29 cells, we show that spheroids tolerate considerably higher doses of nanoparticle-loaded MTO. Therefore, dose predictions from conventional monolayer cell cultures are often misleading for in vivo applications. This was true for both soluble and nanoparticle-bound MTO. Using flow chambers mimicking in vivo blood flow, we furthermore demonstrate that SPIONs can magnetically accumulate MTO. We conclude that SPIONs can function as an effective delivery platform to increase local drug concentrations, thereby potentially overcoming chemotherapy resistance of cells.

20.
Cells ; 9(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024193

RESUMEN

For the conversion of immunologically cold tumors, characterized by a low T cell infiltration, into hot tumors, it is necessary to enrich T cells in the tumor area. One possibility is the use of magnetic fields to direct T cells into the tumor. For this purpose, primary T cells that were freshly isolated from human whole blood were loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate). Cell toxicity and particle uptake were investigated by flow cytometry and atomic emission spectroscopy. The optimum loading of the T cells without any major effect on their viability was achieved with a particle concentration of 75 µg Fe/mL and a loading period of 24 h. The cellular content of SPIONCitrate was sufficient to attract these T cells with a magnet which was monitored by live-cell imaging. The functionality of the T cells was only slightly influenced by SPIONCitrate, as demonstrated by in vitro stimulation assays. The proliferation rate as well as the expression of co-stimulatory and inhibitory surface molecules (programmed cell death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin and mucin domain containing 3 (Tim-3), C-C motif chemokine receptor 7 (CCR7), CD25, CD45RO, CD69) was investigated and found to be unchanged. Our results presented here demonstrate the feasibility of loading primary human T lymphocytes with superparamagnetic iron oxide nanoparticles without influencing their viability and functionality while achieving sufficient magnetizability for magnetically controlled targeting. Thus, the results provide a strong fundament for the transfer to tumor models and ultimately for new immunotherapeutic approaches for cancer treatment.


Asunto(s)
Ácido Cítrico/farmacología , Activación de Linfocitos/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Linfocitos T/inmunología , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Clonales , Humanos , Inmunofenotipificación , Interleucina-2/metabolismo , Activación de Linfocitos/inmunología , Subgrupos Linfocitarios/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA