Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Sci ; 99(3)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33693597

RESUMEN

A randomized complete block design experiment with 30 yearling crossbred steers (average BW = 436.3 ± 39.8 kg) fed a steam-flaked corn-based diet was used to evaluate the effects dietary vitamin A (Rovimix A 1000; DSM Nutritional Products Ltd., Sisseln, SUI) supplementation on myogenic gene expression and skeletal muscle fiber characteristics during the finishing phase. Steers were blocked by BW (n = 5 blocks; 6 steers/block), randomly assigned to pens (n = 2 steers/pen), and one of the following treatments: no added vitamin A (0 IU; 0.0 IU/kg of dietary dry matter intake of additional vitamin A), vitamin A supplemented at the estimated requirement (2,200 IU; 2,200 IU/kg of dietary dry matter (DM) of additional vitamin A), and vitamin A supplemented at 5× the estimated requirement (11,000 IU; 11,000 IU/kg of dietary DM of additional vitamin A). After all treatments underwent a 91-d vitamin A depletion period, additional vitamin A was top-dressed at feeding via a ground corn carrier. Blood, longissimus muscle, and liver biopsy samples were obtained on days 0, 28, 56, 84, and 112. Biopsy samples were used for immunohistochemical and mRNA analysis. Sera and liver samples were used to monitor circulating vitamin A and true vitamin A status of the cattle. Expression for myosin heavy chain (MHC)-I diminished and rebounded (P = 0.04) over time. The intermediate fiber type, MHC-IIA, had a similar pattern of expression (P = 0.01) to that of MHC-I. On day 84, C/EBPß expression was also the greatest (P = 0.03). The pattern of PPARγ (P < 0.01) and PPARδ (P < 0.01) expression seemed to mimic that of MHC-I expression, increasing from days 84 to 112. Distribution of MHC-IIA demonstrated a change over time (P = 0.02). Muscle fiber cross-sectional area increased by day (P < 0.01) for each MHC with the notable increase between days 0 and 56. Total nuclei density decreased (P = 0.02) over time. Cells positive for only Myf5 increased (P < 0.01) in density early in the feeding period, then declined, indicating that satellite cells were fusing into fibers. The dual-positive (PAX7+Myf5) nuclei also peaked (P < 0.01) around day 56 then declined. These data indicated that gene expression associated with oxidative proteins may be independent of vitamin A status in yearling cattle.


Asunto(s)
Alimentación Animal , Vitamina A , Alimentación Animal/análisis , Animales , Composición Corporal , Bovinos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Expresión Génica , Fibras Musculares Esqueléticas
2.
J Anim Sci ; 99(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34551095

RESUMEN

Two experiments were performed to evaluate the effects of bismuth subsalicylate (BSS) and calcium-ammonium nitrate (CAN) on in vitro ruminal fermentation, growth, apparent total tract digestibility of nutrients, liver mineral concentration, and carcass quality of beef cattle. In Exp. 1, four ruminally cannulated steers (520 ± 30 kg body weight [BW]) were used as donors to perform a batch culture and an in vitro organic matter digestibility (IVOMD) procedure. Treatments were arranged in a 2 × 2 factorial with factors being BSS (0 or 0.33% of substrate dry matter [DM]) and CAN (0 or 2.22% of substrate DM). In Exp. 2, 200 Angus-crossbred steers (385 ± 27 kg BW) were blocked by BW and allocated to 50 pens (4 steers/pen) in a randomized complete block design with a 2 × 2 + 1 factorial arrangement of treatments. Factors included BSS (0 or 0.33% of the diet DM) and nonprotein nitrogen (NPN) source (urea or encapsulated CAN [eCAN] included at 0.68% or 2.0% of the diet, respectively) with 0.28% ruminally available S (RAS). A low S diet was included as a positive control containing urea (0.68% of DM) and 0.14% RAS. For Exp. 1, data were analyzed using the MIXED procedure of SAS with the fixed effects of BSS, CAN, BSS × CAN, and the random effect of donor. For Exp. 2, the MIXED procedure of SAS was used for continuous variables and the GLIMMIX procedure for categorical data. For Exp. 1, no differences (P > 0.230) were observed for IVOMD. There was a tendency (P = 0.055) for an interaction regarding H2S production. Acetate:propionate increased (P = 0.003) with the addition of CAN. In Exp. 2, there was a NPN source effect (P = 0.032) where steers consuming urea had greater carcass-adjusted final shrunk BW than those consuming eCAN. Intake of DM (P < 0.001) and carcass-adjusted average daily gain (P = 0.024) were reduced by eCAN; however, it did not affect (P = 0.650) carcass-adjusted feed efficiency. Steers consuming urea had greater (P = 0.032) hot carcass weight, and a BSS × NPN interaction (P = 0.019) was observed on calculated yield grade. Apparent absorption of S decreased (P < 0.001) with the addition of BSS. Final liver Cu concentration was reduced (P = 0.042) by 58% in cattle fed BSS, indicating that BSS may decrease Cu absorption and storage in the liver. The results observed in this experiment indicate that BSS does not have negative effects on feedlot steer performance, whereas CAN may hinder performance of steers fed finishing diets.


Asunto(s)
Alimentación Animal , Rumen , Alimentación Animal/análisis , Animales , Bismuto , Calcio , Bovinos , Dieta/veterinaria , Digestión , Nitratos , Compuestos Organometálicos , Salicilatos
3.
J Anim Sci ; 98(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32812033

RESUMEN

A randomized complete block design experiment with 30 yearling crossbred steers (initial average body weight [BW] = 297.6 ± 32.8 kg) fed a steam-flaked corn-based diet was used to evaluate finishing performance and carcass characteristics when provided with different concentrations of vitamin A (Rovimix A 1000; DSM Nutritional Products Ltd., Sisseln, Switzerland) subsequent to a depletion phase. Steers were blocked by BW (n = 5 blocks; 6 steers per block), assigned to pens (n = 2 steers per pen), and randomly assigned to one of the following dietary treatments: no added vitamin A (0IU; 0.0 IU/kg dry matter [DM] basis of additional vitamin A), vitamin A supplemented at the estimated National Academies of Sciences, Engineering, and Medicine (NASEM) requirement (2,200IU; 2,200 IU/kg of dietary DM of additional vitamin A), and vitamin A supplemented at 5× the estimated requirement (11,000IU; 11,000 IU/kg of dietary DM of additional vitamin A). The basal diet included minimal vitamin A activity (<200 IU of vitamin A activity/kg of dietary DM) via the provitamin A, beta-carotene. After all animals underwent a 91-d vitamin A depletion period, additional vitamin A was top-dressed at feeding via a ground corn carrier. Liver biopsy samples, BW, and blood were obtained on days -91, -35, 0, 28, 56, 84, and 112. Final BW was collected prior to shipping on day 112. Carcass data were collected by trained personnel upon harvest. Sera and liver samples were used to monitor circulating vitamin A and evaluate true vitamin A status of the cattle. Vitamin A status did not affect interim average daily gain or feed efficiency (G:F; P > 0.05). Throughout the duration of the study, dry matter intake for the 0IU cattle was depressed (P = 0.01). Differences were not observed across treatments for hot carcass weight, rib eye area, back fat thickness, kidney-pelvic-heart fat %, marbling score, or dressing percent (P ≥ 0.10). A treatment × day interaction occurred for both (P < 0.01) sera retinol and liver retinol during phase 2 of the trial. The treatments and sera retinol concentrations were incorporated into a repletion model, resulting in an estimation of liver retinol changes (P < 0.01; R2 = 0.682). However, models used to evaluate depleted animals were less effective. The current NASEM recommended that vitamin A requirement of 2,200 IU/kg is adequate for repletion of vitamin A status of feedlot steers.


Asunto(s)
Bovinos/fisiología , Suplementos Dietéticos/análisis , Vitamina A/administración & dosificación , Alimentación Animal/análisis , Animales , Bovinos/crecimiento & desarrollo , Dieta/veterinaria , Hígado/metabolismo , Masculino , Necesidades Nutricionales , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA