Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(32): 21759-21768, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28782765

RESUMEN

Laboratory experiments have shown that the energetic processing, i.e. ion bombardment and UV photolysis, of interstellar grain mantles and cometary surfaces is efficient in the production of formamide. To explain its presence in the gas-phase in these astrophysical environments, a desorption mechanism has to be taken into account. In this work we show experimental results on the thermal evolution of formamide when deposited at 17 K as pure and in mixture with water or carbon monoxide. In these samples, we observed formamide desorption at 220 K. Moreover, we discuss its synthesis in a mixture containing molecular nitrogen, methane and water (N2:CH4:H2O) deposited at 17 K and bombarded with 200 keV H+. Heating the sample, we observed that the newly formed formamide remains trapped in the refractory residue produced after the ion bombardment up to 296 K. To analyse the samples we used Fourier transform-infrared spectroscopy (FT-IR) that allowed us to study the infrared spectra between the deposition and the complete desorption of formamide. Here we discuss the experimental results in view of their astrophysical relevance.

2.
NPJ Microgravity ; 9(1): 43, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308480

RESUMEN

Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry. In this perspective, the European Space Agency (ESA) Topical Team Astrobiology and Astrochemistry (with feedback from the wider scientific community) identifies a number of key topics and summarizes the 2021 "ESA SciSpacE Science Community White Paper" for astrobiology and astrochemistry. We highlight recommendations for the development and implementation of future experiments, discuss types of in situ measurements, experimental parameters, exposure scenarios and orbits, and identify knowledge gaps and how to advance scientific utilization of future space-exposure platforms that are either currently under development or in an advanced planning stage. In addition to the ISS, these platforms include CubeSats and SmallSats, as well as larger platforms such as the Lunar Orbital Gateway. We also provide an outlook for in situ experiments on the Moon and Mars, and welcome new possibilities to support the search for exoplanets and potential biosignatures within and beyond our solar system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA