Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 939: 173525, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38810747

RESUMEN

This work helps address recent calls for systematic water quality assessment in Central Asia and considers how nutrient and salinity sources, and transport, affect water quality along the continuum from the cryosphere to the lowland plains. Spatial and, for the first time, temporal variations in stream water pH, temperature, electrical conductivity, and nitrate and phosphate concentrations are presented for four catchments (485-13,500 km2), all with glaciers and major urban areas. The catchments studied were: Kaskelen (Kazakhstan), Ala-Archa (Kyrgyzstan), Chirchik (Uzbekistan) and the Kofarnihon (Tajikistan). Measurements were made in cryosphere, stream water, groundwater, reservoir and lake samples over a 22-month period at fortnightly intervals from 35 sites. The results highlight that glacier, permafrost and rock glacier outflows were primary and secondary nitrate sources (>1 mg N L-1) to the headwaters, and there were major increases in salinity and nitrate concentrations where rivers receive inputs from agriculture and settlements. Overall, the water quality complied with national and World Health Organization standards, however there were pollution hot-spots with shallow urban groundwaters contaminated with nitrate (>11 mg N L-1) and stream electrical conductivity above 800 µS cm-1 in some agricultural areas indicative of high salinity. Phosphate concentrations were generally low (<0.06 mg P L-1) throughout the catchments, though elevated (>0.2 mg P L-1) in urban areas due to effluent contamination. A melt water dilution effect along the main river channels was discernible, in the electrical conductivity and nitrate concentration seasonal dynamics, 100 s of km from the headwaters. Thus, the input of relatively clean water from the cryosphere is an important regulator of main channel water quality in the urban and farmed lowland plains adjacent to the Tien Shan and Pamir. Improved sewage treatment is needed in urban areas.

2.
Sci Total Environ ; 562: 364-378, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27100016

RESUMEN

The observed increase in summer temperatures and the related glacier downwasting has led to a noticeable decrease of frozen water resources in Central Asia, with possible future impacts on the economy of all downstream countries in the region. Glaciers in the Ak-Shyirak massif, located in the Inner Tien Shan, are not only affected by climate change, but also impacted by the open pit gold mining of the Kumtor Gold Company. In this study, glacier inventories referring to the years 2003 and 2013 were created for the Ak-Shyirak massif based on satellite imagery. The 193 glaciers had a total area of 351.2±5.6km(2) in 2013. Compared to 2003, the total glacier area decreased by 5.9±3.4%. During 2003-2013, the shrinkage rate of Ak-Shyirak glaciers was twice than that in 1977-2003 and similar to shrinkage rates in Tien Shan frontier ranges. We assessed glacier volume in 2013 using volume-area (VA) scaling and GlabTop modelling approaches. Resulting values for the whole massif differ strongly, the VA scaling derived volume is 30.0-26.4km(3) whereas the GlabTop derived volume accounts for 18.8-13.2km(3). Ice losses obtained from both approaches were compared to geodetically-derived volume change. VA scaling underestimates ice losses between 1943 and 2003 whereas GlabTop reveals a good match for eight glaciers for the period 2003-2012. In comparison to radio-echo soundings from three glaciers, the GlabTop model reveals a systematic underestimation of glacier thickness with a mean deviation of 16%. GlabTop tends to significantly underestimate ice thickness in accumulation areas, but tends to overestimate ice thickness in the lowermost parts of glacier snouts. Direct technogenic impact is responsible for about 7% of area and 5% of mass loss for glaciers in the Ak-Shyirak massif during 2003-2013. Therefore the increase of summer temperature seems to be the main driver of accelerated glacier shrinkage in the area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA