Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 208(7): 1554-1565, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35321879

RESUMEN

Type 1 diabetes (T1D) is characterized by the loss of immune self-tolerance, resulting in an aberrant immune responses against self-tissue. A few therapeutics have been partially successful in reverting or slowing down T1D progression in patients, and the infusion of autologous hematopoietic stem cells (HSCs) is emerging as an option to be explored. In this study, we proposed to pharmacologically enhance by ex vivo modulation with small molecules the immunoregulatory and trafficking properties of HSCs to provide a safer and more efficacious treatment option for patients with T1D and other autoimmune disorders. A high-throughput targeted RNA sequencing screening strategy was used to identify a combination of small molecules (16,16-dimethyl PGE2 and dexamethasone), which significantly upregulate key genes involved in trafficking (e.g., CXCR4) and immunoregulation (e.g., programmed death ligand 1). The pharmacologically enhanced, ex vivo-modulated HSCs (regulatory HSCs [HSC.Regs]) have strong trafficking properties to sites of inflammation in a mouse model of T1D, reverted autoimmune diabetes in NOD mice, and delayed experimental multiple sclerosis and rheumatoid arthritis in preclinical models. Mechanistically, HSC.Regs reduced lymphocytic infiltration of pancreatic ß cells and inhibited the activity of autoreactive T cells. Moreover, when tested in clinically relevant in vitro autoimmune assays, HSC.Regs abrogated the autoimmune response. Ex vivo pharmacological modulation enhances the immunoregulatory and trafficking properties of HSCs, thus generating HSC.Regs, which mitigated autoimmune diabetes and other autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Trasplante de Células Madre Hematopoyéticas , Animales , Enfermedades Autoinmunes/terapia , Diabetes Mellitus Tipo 1/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas , Humanos , Ratones , Ratones Endogámicos NOD
2.
Pharmacol Res ; 190: 106710, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871895

RESUMEN

Diabetic kidney disease (DKD) is the first cause of end-stage kidney disease in patients with diabetes and its prevalence is increasing worldwide. It encompasses histological alterations that mainly affect the glomerular filtration unit, which include thickening of the basement membrane, mesangial cell proliferation, endothelial alteration, and podocyte injury. These morphological abnormalities further result in a persistent increase of urinary albumin-to-creatinine ratio and in a reduction of the estimated glomerular filtration rate. Several molecular and cellular mechanisms have been recognized, up to date, as major players in mediating such clinical and histological features and many more are being under investigation. This review summarizes the most recent advances in understanding cell death mechanisms, intracellular signaling pathways and molecular effectors that play a role in the onset and progression of diabetic kidney damage. Some of those molecular and cellular mechanisms have been already successfully targeted in preclinical models of DKD and, in some cases, strategies have been tested in clinical trials. Finally, this report sheds light on the relevance of novel pathways that may become therapeutic targets for future applications in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Humanos , Nefropatías Diabéticas/metabolismo , Podocitos/patología , Transducción de Señal , Tasa de Filtración Glomerular , Diabetes Mellitus/metabolismo
3.
Pharmacol Res ; 190: 106709, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842542

RESUMEN

PURPOSE OF REVIEW: The purine nucleotide adenosine triphosphate (ATP) is released into extracellular spaces as extracellular ATP (eATP) as a consequence of cell injury or death and activates the purinergic receptors. Once released, eATP may facilitate T-lymphocyte activation and differentiation. The purpose of this review is to elucidate the role of ATP-mediated signaling in the immunological events related to type 1 diabetes (T1D). RECENT FINDINGS: T lymphocytes mediate immune response during the onset of T1D and promote pancreatic islet or whole pancreas rejection in transplantation. Recent data suggest a potential role for eATP in early steps of T1D onset and of allograft rejection. In different preclinical experimental models and clinical trials, several drugs targeting purinergic signaling have been employed to abrogate lymphocyte activation and differentiation, thus representing an achievable treatment to prevent/revert T1D or to induce long-term islet allograft function. SUMMARY: In preclinical and clinical settings, eATP-signaling inhibition induces immune tolerance in autoimmune disease and in allotransplantation. In this view, the purinergic system may represent a novel therapeutic target for auto- and allo-immunity.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Trasplante Homólogo , Linfocitos T/metabolismo , Adenosina Trifosfato/metabolismo
4.
J Immunol ; 206(6): 1117-1125, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33685919

RESUMEN

Since they were discovered almost three decades ago, a subset of B cells denoted as regulatory B cells (Bregs) have elicited interest throughout the immunology community. Many investigators have sought to characterize their phenotype and to understand their function and immunosuppressive mechanisms. Indeed, studies in murine models have demonstrated that Bregs possess varied phenotypic markers and could be classified into different subsets whose action and pivotal role depend on the pathological condition or stimuli. Similar conclusions were drawn in clinical settings delineating an analogous Breg population phenotypically resembling the murine Bregs that ultimately may be associated with a state of tolerance. Recent studies suggested that Bregs may play a role in the onset of autoimmune diabetes. This review will focus on deciphering the different subclasses of Bregs, their emerging role in autoimmune diabetes, and their potential use as a cell-based therapeutic.


Asunto(s)
Autoinmunidad , Linfocitos B Reguladores/inmunología , Diabetes Mellitus Tipo 1/inmunología , Animales , Linfocitos B Reguladores/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/sangre , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Ratones
5.
Pharmacol Res ; 182: 106320, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35738455

RESUMEN

In the last few years, a great interest has emerged in investigating the pleiotropic effects of Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs). While GLP-1RAs ability to lower plasma glucose and to induce weight loss has allowed them to be approved for the treatment of diabetes and obesity, consistent evidences from in vitro studies and preclinical models suggested that GLP-1RAs have anti-inflammatory properties and that may modulate the immune-system. Notably, such anti-inflammatory effects target different pathways in different tissues, underling the broad spectrum of GLP-1RAs actions. This review examines some of the currently proposed molecular mechanisms of GLP-1RAs actions and explores their potential benefits in reducing inflammatory responses, which may well suggest a future therapeutic use of GLP-1RAs in new indications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Hipoglucemiantes/uso terapéutico , Liraglutida/farmacología , Obesidad/tratamiento farmacológico
6.
Am J Transplant ; 21(10): 3280-3295, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33764625

RESUMEN

Despite much progress in improving graft outcome during cardiac transplantation, chronic allograft vasculopathy (CAV) remains an impediment to long-term graft survival. MicroRNAs (miRNAs) emerged as regulators of the immune response. Here, we aimed to examine the miRNA network involved in CAV. miRNA profiling of heart samples obtained from a murine model of CAV and from cardiac-transplanted patients with CAV demonstrated that miR-21 was most significantly expressed and was primarily localized to macrophages. Interestingly, macrophage depletion with clodronate did not significantly prolong allograft survival in mice, while conditional deletion of miR-21 in macrophages or the use of a specific miR-21 antagomir resulted in indefinite cardiac allograft survival and abrogated CAV. The immunophenotype, secretome, ability to phagocytose, migration, and antigen presentation of macrophages were unaffected by miR-21 targeting, while macrophage metabolism was reprogrammed, with a shift toward oxidative phosphorylation in naïve macrophages and with an inhibition of glycolysis in pro-inflammatory macrophages. The aforementioned effects resulted in an increase in M2-like macrophages, which could be reverted by the addition of L-arginine. RNA-seq analysis confirmed alterations in arginase-associated pathways associated with miR-21 antagonism. In conclusion, miR-21 is overexpressed in murine and human CAV, and its targeting delays CAV onset by reprogramming macrophages metabolism.


Asunto(s)
Trasplante de Corazón , MicroARNs , Aloinjertos , Animales , Rechazo de Injerto/genética , Rechazo de Injerto/prevención & control , Trasplante de Corazón/efectos adversos , Humanos , Macrófagos , Ratones , MicroARNs/genética
7.
Pharmacol Res ; 133: 1-8, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29689314

RESUMEN

Sodium glucose cotransporter inhibitors (SGLTi) are oral hypoglycemic drugs that reduce renal glucose re-uptake and induce glycosuria. SGLTi have been successfully tested in large randomized clinical trials for type 2 diabetes, and several molecules have been approved in this setting by the international pharmaceutical agencies. Additionally, recent evidence has shown that SGLTi may be useful also in type 1 diabetes (T1D). Indeed, these drugs can be used as an ancillary to insulin to improve glycemic control and reduce insulin dosage, and such regimens have been associated with a lower rate of hypoglycemic episodes. The pharmacological effects of SGLTi therapy are described herein, and we also discuss the future use of SGLTi in T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Proteínas de Transporte de Sodio-Glucosa/antagonistas & inhibidores , Animales , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Proteínas de Transporte de Sodio-Glucosa/metabolismo
8.
Clin Immunol ; 178: 29-38, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26732858

RESUMEN

Mast cells (MCs) are innate immune cells that exert positive and negative immune modulatory functions capable to enhance or limit the intensity and/or duration of adaptive immune responses. Although MCs are crucial to regulate T cell immunity, their action in the pathogenesis of autoimmune diseases is still debated. Here we demonstrate that MCs play a crucial role in T1D pathogenesis so that their selective depletion in conditional MC knockout NOD mice protects them from the disease. MCs of diabetic NOD mice are overly inflammatory and secrete large amounts of IL-6 that favors differentiation of IL-17-secreting T cells at the site of autoimmunity. Moreover, while MCs of control mice acquire an IL-10+ phenotype upon interaction with FoxP3+ Treg cells, MCs of NOD mice do not undergo this tolerogenic differentiation. Our data indicate that overly inflammatory MCs unable to acquire a tolerogenic IL-10+ phenotype contribute to the pathogenesis of autoimmune T1D.


Asunto(s)
Autoinmunidad/inmunología , Diabetes Mellitus Tipo 1/inmunología , Tolerancia Inmunológica/inmunología , Islotes Pancreáticos/inmunología , Mastocitos/inmunología , Animales , Glucemia/metabolismo , Quimasas/genética , Diabetes Mellitus Tipo 1/metabolismo , Citometría de Flujo , Factores de Transcripción Forkhead/metabolismo , Inmunohistoquímica , Inflamación , Interleucina-10/inmunología , Interleucina-17/inmunología , Interleucina-6/inmunología , Captura por Microdisección con Láser , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células Th17/inmunología
9.
J Am Soc Nephrol ; 26(5): 1007-16, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25452669

RESUMEN

Intracellular ATP is the most vital source of cellular energy for biologic systems, whereas extracellular ATP is a multifaceted mediator of several cell functions via its interaction, in an autocrine or paracrine manner, with P2 purinergic receptors expressed on the cell surface. These ionotropic and metabotropic P2 purinergic receptors modulate a variety of physiologic events upon the maintenance of a highly sensitive "set point," the derangement of which may lead to the development of key pathogenic mechanisms during acute and chronic diseases. Growing evidence suggests that extracellular ATP signaling via P2 purinergic receptors may be involved in different renal pathologic conditions. For these reasons, investigators and pharmaceutical companies are actively exploring novel strategies to antagonize or block these receptors with the goal of reducing extracellular ATP production or accelerating extracellular ATP clearance. Targeting extracellular ATP signaling, particularly through the P2X7 receptor, has considerable translational potential, given that novel P2X7-receptor inhibitors are already available for clinical use (e.g., CE224,535, AZD9056, and GSK1482160). This review summarizes the current evidence regarding the involvement of extracellular ATP and its P2 purinergic receptor-mediated signaling in physiologic and pathologic processes in the kidney; potential therapeutic options targeting extracellular ATP purinergic receptors are analyzed as well.


Asunto(s)
Adenosina Trifosfato/metabolismo , Líquido Extracelular/metabolismo , Enfermedades Renales/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Humanos , Riñón/metabolismo , Enfermedades Renales/etiología
10.
Pharmacol Res ; 98: 39-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25447794

RESUMEN

Diabetes mellitus is a chronic disease that in the long-term increases the microvascular and macrovascular degenerative complications thus being responsible for a large part of death associated with diabetes. During the years, while preventive care for diabetic patients has improved, the increase in the prevalence of diabetes worldwide is continuous. The detrimental effects of diabetes mellitus result in microvascular diseases, which recognize hyperglycemia as major determinant. A significant number of potential therapeutic targets for the treatment of diabetic microvascular complications have been proposed, but the encouraging results obtained in preclinical studies, have largely failed in clinical trials. Currently, the most successful strategy to prevent microvascular complications of diabetes is the intensive treatment of hyperglycemia or the normalization of glycometabolic control achieved with pancreatic and islet transplantation. In this review, we focus on the novel therapeutic targets to prevent the development and progression of diabetic nephropathy and retinopathy microvascular complications.


Asunto(s)
Nefropatías Diabéticas/terapia , Retinopatía Diabética/terapia , Animales , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Nefropatías Diabéticas/cirugía , Retinopatía Diabética/cirugía , Humanos , Trasplante de Islotes Pancreáticos , Trasplante de Páncreas/métodos
11.
Pharmacol Res ; 98: 31-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25107501

RESUMEN

Despite considerable effort to halt or delay destruction of ß-cells in autoimmune type 1 diabetes (T1D), success remains elusive. Over the last decade, we have seen a proliferation of knowledge on the pathogenesis of T1D that emerged from studies performed in non-obese diabetic (NOD) mice. However, while results of these preclinical studies appeared to hold great promise and boosted patients' hopes, none of these approaches, once tested in clinical settings, induced remission of autoimmune diabetes in individuals with T1D. The primary obstacles to translation reside in the differences between the human and murine autoimmune responses and in the contribution of many environmental factors associated with the onset of disease. Moreover, inaccurate dosing as well as inappropriate timing and uncertain length of drug exposure have played a central role in the negative outcomes of such therapeutic interventions. In this review, we summarize the most important approaches tested thus far in T1D, beginning with the most successful preclinical studies in NOD mice and ending with the latest disappointing clinical trials in humans. Finally, we highlight recent stem cell-based trials, for which expectations in the scientific community and among individuals with T1D are high.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Inmunoterapia/métodos , Animales , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos
12.
Front Endocrinol (Lausanne) ; 15: 1306127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318298

RESUMEN

Pancreatic beta cells replenishment is considered the next therapeutic option for type 1 diabetes; while stimulating endogenous beta cells proliferation is the "holy grail" for those patients with exhausted beta cell mass. Here we are demonstrating that the pro-apoptotic receptor TMEM219 is expressed in fetal pancreas, in beta cell precursors and in in vitro embryonic-derived endocrine progenitors. TMEM219 signaling negatively regulates beta cells at early stages and induces Caspase 8-mediated cell death. Pharmacological blockade of TMEM219 further rescued beta cell precursor and proliferation markers, and decreased cell death, both in islets and in in vitro-derived endocrine progenitors, allowing for beta cell preservation. While addressing the upstream controlling TMEM219 expression, we determined the TMEM219 miRNet; indeed, one of those miRNAs, miR-129-2, is highly expressed in human islets, particularly in patients at risk or with established type 1 diabetes. miR-129-2 mimic downregulated TMEM219 expression in islets, in in vitro embryonic-derived endocrine progenitors and in highly proliferating insulinoma-derived cells. Moreover, miR-129-2 inhibitor induced a TMEM219 overexpression in insulinoma-derived cells, which restored cell proliferation and functional markers, thus acting as endogenous regulator of TMEM219 expression. The TMEM219 upstream regulator miR129-2 controls the fate of beta cell precursors and may unleash their regenerative potentials to replenish beta cells in type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Insulinoma , MicroARNs , Neoplasias Pancreáticas , Humanos , Proliferación Celular , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción/metabolismo
13.
Cell Metab ; 36(6): 1302-1319.e12, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838642

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Trasplante de Islotes Pancreáticos , Ratones Endogámicos C57BL , Animales , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Masculino , Trasplante de Corazón , Ratones Endogámicos BALB C , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Supervivencia de Injerto/inmunología
14.
Diabetes Res Clin Pract ; 206: 111011, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956944

RESUMEN

AIMS: The use of advanced hybrid closed loop systems is spreading due to the beneficial effects on glycometabolic control obtained in patients with type 1 diabetes. However, hypoglycemic episodes can be sometimes a matter of concern. We aim to compare the hypoglycemic risk of an advanced hybrid closed loop system and a predictive low glucose suspend sensor augmented pump. METHODS: In this retrospective three months observational study, we included 30 patients using Medtronic Minimed™ 780G advanced hybrid closed loop system and 30 patients using a Medtronic Minimed™ predictive low glucose suspend sensor augmented pump. RESULTS: The advanced hybrid closed loop system reduced the time spent above 180 mg/dL threshold and increased the time in range as compared to the predictive low glucose suspend. No severe hypoglycemia occurred in both groups and no differences were observed in the percentage of time spent below 70 mg/dl and 54 mg/dl glucose threshold. Nevertheless, more hypoglycemic episodes were recorded during daytime, but not in nighttime, with the use of the advanced hybrid closed loop system. CONCLUSIONS: Our results confirmed the general improvement of glycemic outcomes obtained with the advanced hybrid closed loop system; however more hypoglycemic episodes during daytime were evident.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Humanos , Glucemia , Estudios Retrospectivos , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Hipoglucemia/prevención & control , Hipoglucemia/inducido químicamente , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucosa/uso terapéutico , Automonitorización de la Glucosa Sanguínea
15.
Diabetes ; 72(11): 1641-1651, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625134

RESUMEN

Extracellular (e)ATP, a potent proinflammatory molecule, is released by dying/damaged cells at the site of inflammation and is degraded by the membrane ectonucleotidases CD39 and CD73. In this study, we sought to unveil the role of eATP degradation in autoimmune diabetes. We then assessed the effect of soluble CD39 (sCD39) administration in prevention and reversal studies in NOD mice as well as in mechanistic studies. Our data showed that eATP levels were increased in hyperglycemic NOD mice compared with prediabetic NOD mice. CD39 and CD73 were found expressed by both α- and ß-cells and by different subsets of T cells. Importantly, prediabetic NOD mice displayed increased frequencies of CD3+CD73+CD39+ cells within their pancreata, pancreatic lymph nodes, and spleens. The administration of sCD39 into prediabetic NOD mice reduced their eATP levels, abrogated the proliferation of CD4+- and CD8+-autoreactive T cells, and increased the frequency of regulatory T cells, while delaying the onset of T1D. Notably, concomitant administration of sCD39 and anti-CD3 showed a strong synergism in restoring normoglycemia in newly hyperglycemic NOD mice compared with monotherapy with anti-CD3 or with sCD39. The eATP/CD39 pathway plays an important role in the onset of T1D, and its targeting might represent a potential therapeutic strategy in T1D.

16.
Adv Mater ; 35(40): e2300812, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357903

RESUMEN

Immune therapeutics holds great promise in the treatment of type 1 diabetes (T1D). Nonetheless, their progress is hampered by limited efficacy, equipoise, or issues of safety. To address this, a novel and specific nanodelivery platform for T1D that targets high endothelial venules (HEVs) presented in the pancreatic lymph nodes (PLNs) and pancreas is developed. Data indicate that the pancreata of nonobese diabetic (NOD) mice and patients with T1D are unique in their expression of newly formed HEVs. Anti-CD3 mAb is encapsulated in poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles (NPs), the surfaces of which are conjugated with MECA79 mAb that recognizes HEVs. Targeted delivery of these NPs improves accumulation of anti-CD3 mAb in both the PLNs and pancreata of NOD mice. Treatment of hyperglycemic NOD mice with MECA79-anti-CD3-NPs results in significant reversal of T1D compared to those that are untreated, treated with empty NPs, or provided free anti-CD3. This effect is associated with a significant reduction of T effector cell populations in the PLNs and a decreased production of pro-inflammatory cytokine in the mice treated with MECA79-anti-CD3-NPs. In summary, HEV-targeted therapeutics may be used as a means by which immune therapeutics can be delivered to PLNs and pancreata to suppress autoimmune diabetes effectively.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Ratones Endogámicos NOD , Páncreas
17.
J Immunol ; 185(12): 7317-29, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21078913

RESUMEN

Invariant NKT (iNKT) cells play an effector/adjuvant function during antimicrobial and antitumoral immunity and a regulatory role to induce immune tolerance and prevent autoimmunity. iNKT cells that differentially modulate adaptive immunity do not bear a unique phenotype and/or specific cytokine secretion profile, thus opening questions on how a single T cell subset can exert opposite immunological tasks. In this study, we show that iNKT cells perform their dual roles through a single mechanism of action relying on the cognate interaction with myeloid dendritic cells (DCs) and leading to opposite effects depending on the presence of other maturation stimuli simultaneously acting on DCs. The contact of murine purified iNKT cells with immature autologous DCs directly triggers the tolerogenic maturation of DCs, rendering them able to induce regulatory T cell differentiation and prevent autoimmune diabetes in vivo. Conversely, the interaction of the same purified iNKT cells with DCs, in the presence of simultaneous TLR4 stimulation, significantly enhances proinflammatory DC maturation and IL-12 secretion. The different iNKT cell effects are mediated through distinct mechanisms and activation of different molecular pathways within the DC: CD1d signaling and activation of the ERK1/2 pathway for the tolerogenic action, and CD40-CD40L interaction and NF-κB activation for the adjuvant effect. Our data suggest that the DC decision to undergo proinflammatory or tolerogenic maturation results from the integration of different signals received at the time of iNKT cell contact and could have important therapeutic implications for exploiting iNKT cell adjuvant/regulatory properties in autoimmune diseases, infections, and cancer.


Asunto(s)
Antígenos CD1d/inmunología , Comunicación Celular/inmunología , Células Dendríticas/inmunología , Tolerancia Inmunológica , Células T Asesinas Naturales/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Animales , Antígenos CD1d/genética , Antígenos CD40/genética , Antígenos CD40/inmunología , Ligando de CD40/genética , Ligando de CD40/inmunología , Comunicación Celular/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Dendríticas/citología , Interleucina-12/genética , Interleucina-12/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Células Mieloides/inmunología , FN-kappa B/genética , FN-kappa B/inmunología , Transducción de Señal/genética , Receptor Toll-Like 4/genética
18.
Transplantation ; 106(3): 500-509, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34049364

RESUMEN

During the past years, solid allograft rejection has been considered the consequence of either cellular- or antibody-mediated reaction both being part of the adaptive immune response, whereas the role of innate immunity has been mostly considered less relevant. Recently, a large body of evidence suggested that the innate immune response and its soluble mediators may play a more important role during solid allograft rejection than originally thought. This review will highlight the role of novel soluble mediators that are involved in the activation of innate immunity during alloimmune response and solid allograft rejection. We will also discuss emerging strategies to alleviate the aforementioned events. Hence, novel, feasible, and safe clinical therapies are needed to prevent allograft loss in solid organ transplantation. Fully understanding the role of soluble mediators of innate immune system activation may help to mitigate solid allograft rejection and improve transplanted recipients' outcomes.


Asunto(s)
Rechazo de Injerto , Trasplante de Órganos , Aloinjertos , Rechazo de Injerto/prevención & control , Sistema Inmunológico , Inmunidad Innata , Trasplante de Órganos/efectos adversos , Trasplante Homólogo
19.
Acta Diabetol ; 59(9): 1157-1167, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35729357

RESUMEN

AIMS: Abnormalities in the oculomotor system may represent an early sign of diabetic neuropathy and are currently poorly studied. We designed an eye-tracking-based test to evaluate oculomotor function in patients with type 1 diabetes. METHODS: We used the SRLab-Tobii TX300 Eye tracker®, an eye-tracking device, coupled with software that we developed to test abnormalities in the oculomotor system. The software consists of a series of eye-tracking tasks divided into 4 classes of parameters (Resistance, Wideness, Pursuit and Velocity) to evaluate both smooth and saccadic movement in different directions. We analyzed the oculomotor system in 34 healthy volunteers and in 34 patients with long-standing type 1 diabetes. RESULTS: Among the 474 parameters analyzed with the eye-tracking-based system, 11% were significantly altered in patients with type 1 diabetes (p < 0.05), with a higher proportion of abnormalities observed in the Wideness (24%) and Resistance (10%) parameters. Patients with type 1 diabetes without diabetic neuropathy showed more frequently anomalous measurements in the Resistance class (p = 0.02). The classes of Velocity and Pursuit were less frequently altered in patients with type 1 diabetes as compared to healthy subjects, with anomalous measurements mainly observed in patients with diabetic neuropathy. CONCLUSIONS: Abnormalities in oculomotor system function can be detected in patients with type 1 diabetes using a novel eye-tracking-based test. A larger cohort study may further determine thresholds of normality and validate whether eye-tracking can be used to non-invasively characterize early signs of diabetic neuropathy. TRIAL: NCT04608890.


Asunto(s)
Diabetes Mellitus Tipo 1 , Neuropatías Diabéticas , Estudios de Cohortes , Diabetes Mellitus Tipo 1/complicaciones , Neuropatías Diabéticas/diagnóstico , Neuropatías Diabéticas/etiología , Humanos , Seguimiento Ocular Uniforme , Movimientos Sacádicos
20.
Diabetes ; 71(7): 1579-1590, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35499468

RESUMEN

Recent studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may induce metabolic distress, leading to hyperglycemia in patients affected by coronavirus disease 19 (COVID-19). We investigated the potential indirect and direct effects of SARS-CoV-2 on human pancreatic islets in 10 patients who became hyperglycemic after COVID-19. Although there was no evidence of peripheral anti-islet autoimmunity, the serum of these patients displayed toxicity on human pancreatic islets, which could be abrogated by the use of anti-interleukin-1ß (IL-1ß), anti-IL-6, and anti-tumor necrosis factor α, cytokines known to be highly upregulated during COVID-19. Interestingly, the receptors of those aforementioned cytokines were highly expressed on human pancreatic islets. An increase in peripheral unmethylated INS DNA, a marker of cell death, was evident in several patients with COVID-19. Pathology of the pancreas from deceased hyperglycemic patients who had COVID-19 revealed mild lymphocytic infiltration of pancreatic islets and pancreatic lymph nodes. Moreover, SARS-CoV-2-specific viral RNA, along with the presence of several immature insulin granules or proinsulin, was detected in postmortem pancreatic tissues, suggestive of ß-cell-altered proinsulin processing, as well as ß-cell degeneration and hyperstimulation. These data demonstrate that SARS-CoV-2 may negatively affect human pancreatic islet function and survival by creating inflammatory conditions, possibly with a direct tropism, which may in turn lead to metabolic abnormalities observed in patients with COVID-19.


Asunto(s)
COVID-19 , Islotes Pancreáticos , COVID-19/complicaciones , Citocinas/metabolismo , Humanos , Hiperglucemia/virología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/virología , Proinsulina/metabolismo , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA