Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 99: 117603, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246115

RESUMEN

NHE5, an isoform of the Na+/H+ exchanger (NHE) protein, is an ion-transporting membrane protein that regulates intracellular pH and is highly expressed in colorectal adenocarcinoma. Therefore, we hypothesized that NHE5 inhibitors can be used as anticancer drugs. However, because NHE1 is ubiquitously expressed in all cells, it is extremely important to demonstrate its selective inhibitory activity against NHE5. We used amiloride, an NHE non-selective inhibitor, as a lead compound and created UTX-143, which has NHE5-selective inhibitory activity, using a structure-activity relationship approach. UTX-143 showed selective cytotoxic effects on cancer cells and reduced the migratory and invasive abilities of cancer cells. These results suggest a new concept wherein drugs exhibit cancer-specific cytotoxic effects through selective inhibition of NHE5 and the possibility of UTX-143 as a lead NHE5-selective inhibitor.


Asunto(s)
Amilorida , Sodio , Amilorida/farmacología , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas de la Membrana/metabolismo , Hidrógeno , Concentración de Iones de Hidrógeno
2.
Invest New Drugs ; 39(3): 724-735, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33409897

RESUMEN

Aurora kinase A, a mitotic kinase that is overexpressed in various cancers, is a promising cancer drug target. Here, we performed preclinical characterization of TAS-119, a novel, orally active, and highly selective inhibitor of Aurora A. TAS-119 showed strong inhibitory effect against Aurora A, with an IC50 value of 1.04 nmol/L. The compound was highly selective for Aurora A compared with 301 other protein kinases, including Aurora kinase B. TAS-119 induced the inhibition of Aurora A and accumulation of mitotic cells in vitro and in vivo. It suppressed the growth of various cancer cell lines harboring MYC family amplification and CTNNB1 mutation in vitro. In a xenograft model of human lung cancer cells harboring MYC amplification and CTNNB1 mutation, TAS-119 showed a strong antitumor activity at well-tolerated doses. TAS-119 induced N-Myc degradation and inhibited downstream transcriptional targets in MYCN-amplified neuroblastoma cell lines. It also demonstrated inhibitory effect against tropomyosin receptor kinase (TRK)A, TRKB, and TRKC, with an IC50 value of 1.46, 1.53, and 1.47 nmol/L, respectively. TAS-119 inhibited TRK-fusion protein activity and exhibited robust growth inhibition of tumor cells via a deregulated TRK pathway in vitro and in vivo. Our study indicates the potential of TAS-119 as an anticancer drug, especially for patients harboring MYC amplification, CTNNB1 mutation, and NTRK fusion.


Asunto(s)
Antineoplásicos , Aurora Quinasa A , Neoplasias Pulmonares , Piperidinas , Inhibidores de Proteínas Quinasas , Receptor trkA , Carcinoma Pulmonar de Células Pequeñas , Animales , Humanos , Masculino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , beta Catenina/genética , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Carga Tumoral/efectos de los fármacos , Piperidinas/farmacología , Piperidinas/uso terapéutico
3.
Bioorg Med Chem ; 29: 115889, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33260051

RESUMEN

Various radiosensitizers are being developed to increase the radiation sensitivity of hypoxic cancer cells, which show resistance to radiation. Previously, we demonstrated that an acetyl glucose-modified nitroimidazole derivative showed a high radiosensitizing effect by inhibiting glucose uptake and glycolysis. Based on this finding, we designed and synthesized novel sugar hybrid radiosensitizers, wherein acetyl glucose was introduced into gefitinib. Among them, UTX-114 had higher autophosphorylation and radiosensitizing activity than gefitinib and inhibited glucose uptake. This result supports our hypothesis that an acetyl glucose moiety improves the radiosensitizing effect of the drug, and UTX-114 can be expected to be a leading compound with a radiosensitizing effect.


Asunto(s)
Antineoplásicos/química , Gefitinib/química , Glucosa/química , Nitroimidazoles/química , Fármacos Sensibilizantes a Radiaciones/química , Antineoplásicos/farmacología , Refuerzo Biomédico , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Receptores ErbB/metabolismo , Gefitinib/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Proteínas de Transporte de Monosacáridos/metabolismo , Fosforilación , Fármacos Sensibilizantes a Radiaciones/farmacología
4.
Chem Pharm Bull (Tokyo) ; 69(10): 1017-1028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602570

RESUMEN

Celecoxib, a nonsteroidal anti-inflammatory drug, has been reported to have antitumor and antimetastatic activities, and it has potential for application in cancer treatments. The expression of matrix metalloproteinase (MMP)-2/9 is strongly correlated with cancer malignancy, and inhibition of these MMPs is believed to be effective in improving the antitumor and antimetastatic effects of drugs. We have previously revealed that UTX-121, which converted the sulfonamide of celecoxib to methyl ester, has more potent MMP-2/9 inhibitory activity than celecoxib. Based on these findings, we identified compounds with improved MMP inhibitory activity through a structure-activity relationship (SAR) study, using UTX-121 as a lead compound. Among them, compounds 9c and 10c, in which the methyl group of the p-tolyl group was substituted for Cl or F, showed significantly higher antitumor activity than UTX-121, and suppressed the expression of MMP-2/9 and activation of pro MMP-2. Our findings suggest that compounds 9c and 10c may be potent lead compounds for the development of more effective antitumor drugs targeting MMP.


Asunto(s)
Antineoplásicos/farmacología , Desarrollo de Medicamentos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/síntesis química , Inhibidores de la Metaloproteinasa de la Matriz/química , Estructura Molecular , Relación Estructura-Actividad
5.
J Appl Clin Med Phys ; 22(7): 66-76, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33955161

RESUMEN

Volumetric-modulated arc therapy (VMAT) requires highly accurate control of multileaf collimator (MLC) movement, rotation speed of linear accelerator gantry, and monitor units during irradiation. Pretreatment validation and monitoring of these factors during irradiation are necessary for appropriate VMAT treatment. Recently, a gantry mounted transmission detector "Delta4 Discover® (D4D)" was developed to detect errors in delivering doses and dose distribution immediately after treatment. In this study, the performance of D4D was evaluated. Simulation plans, in which the MLC position was displaced by 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm from the clinically used original plans, were created for ten patients who received VMAT treatment for prostate cancer. Dose deviation (DD), distance-to-agreement (DTA), and gamma index analysis (GA) for each plan were evaluated by D4D. These results were compared to the results (DD, DTA and GA) measured by Delta4 Phantom + (D4P). We compared the deviations between the planned and measured values of the MLC stop positions A-side and B-side in five clinical cases of prostate VMAT during treatment and measured the GA values. For D4D, when the acceptable errors for DD, DTA, and GA were determined to be ≤3%, ≤2 mm, and ≤3%/2 mm, respectively, the minimum detectable errors in the MLC position were 2.0, 1.5, and 1.5 mm based on DD, DTA, and GA respectively. The corresponding minimum detectable MLC position errors were 2.0, 1.0, and 1.5 mm, respectively, for D4P. The deviation between the planned and measured position of MLC stopping point of prostate VMAT during treatment was stable at an average of -0.09 ± 0.05 mm, and all GA values were above 99.86%. In terms of delivering doses and dose distribution of VMAT, error detectability of D4D was comparable to that of D4P. The transmission-type detector "D4D" is thus suitable for detecting delivery errors during irradiation.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Humanos , Masculino , Aceleradores de Partículas , Fantasmas de Imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
6.
Biochem Biophys Res Commun ; 521(1): 137-144, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629465

RESUMEN

We designed and synthesized a celecoxib derivative UTX-121 to enhance its anti-tumor activity. Similar to celecoxib, this compound could also inhibit matrix metalloproteinase (MMP)-9 activity. In addition, UTX-121 suppressed membrane-type 1 MMP (MT1-MMP)-mediated pro-MMP-2 activation by disturbing the cell surface expression of MT1-MMP. UTX-121 also impeded the glycosylation of cell surface proteins, resulting in the suppression of cell attachment to fibronectin. This inhibition by UTX-121 caused the reduction of fibronectin-stimulated focal adhesion kinase activation, Akt activation, and cell migration. Consequently, UTX-121 treatment significantly inhibited fibronectin-induced HT1080 cell invasion into the Matrigel. UTX-121 may be a potent lead compound that can be used to develop a novel anti-tumor drug.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Celecoxib/farmacología , Metaloproteinasa 14 de la Matriz/metabolismo , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Celecoxib/análogos & derivados , Celecoxib/química , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Estructura Molecular , Células Tumorales Cultivadas
7.
Bioorg Med Chem Lett ; 29(11): 1304-1307, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30975626

RESUMEN

Among the various enzymes, reductases that catalyze one-electron reduction are involved in the selective activation of functional compounds or materials in hypoxia, which is one of the well-known pathophysiological characteristics of solid tumors. Enzymatic one-electron reduction has been recognized as a useful reaction that can be applied in the design of tumor hypoxia-targeting drugs. In this report, we characterized the enzymatic reaction of 5-fluorodeoxyuridine (FdUrd) prodrug bearing an indolequinone unit (IQ-FdUrd), which is a substrate of reductases. IQ-FdUrd was activated to release FdUrd under hypoxic conditions after treatment with cytochrome NADPH P450 reductase. We also confirmed that IQ-FdUrd showed selective cytotoxicity in hypoxic tumor cells.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Floxuridina/farmacología , Indolquinonas/farmacología , NADPH-Ferrihemoproteína Reductasa/metabolismo , Profármacos/farmacología , Relación Dosis-Respuesta a Droga , Activación Enzimática , Floxuridina/química , Floxuridina/metabolismo , Humanos , Indolquinonas/química , Indolquinonas/metabolismo , Estructura Molecular , NADP/metabolismo , Profármacos/química , Profármacos/metabolismo , Relación Estructura-Actividad
8.
Molecules ; 22(4)2017 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-28346389

RESUMEN

Sonodynamic therapy (SDT) kills tumor cells through the synergistic effects of ultrasound (US) and a sonosensitizer agent. 5-Aminolevulinic acid (5-ALA) has been used as a sonodynamic sensitizer for cancer treatment. However, studies have shown that 5-ALA-based SDT has limited efficacy against malignant tumors. In this study, we examined whether artesunate (ART) could enhance the cytotoxicity of 5-ALA-based SDT against mouse mammary tumor (EMT-6) cells in vitro. In the ART, ART + US, ART + 5-ALA, and ART + 5-ALA + US groups, the cell survival rate correlated with ART concentration, and decreased with increasing concentrations of ART. Morphologically, many apoptotic and necrotic cells were observed in the ART + 5-ALA + US group. The percentage of reactive oxygen species-positive cells in the ART + 5-ALA + US group was also significantly higher than that in the 5-ALA group (p = 0.0228), and the cell death induced by ART + 5-ALA + US could be inhibited by the antioxidant N-acetylcysteine. These results show that ART offers great potential in enhancing the efficacy of 5-ALA-based SDT for the treatment of cancer. However, these results are only based on in vitro studies, and further in vivo studies are required.


Asunto(s)
Ácido Aminolevulínico/farmacología , Artemisininas/farmacología , Neoplasias Mamarias Animales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Artesunato , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Técnicas In Vitro , Neoplasias Mamarias Animales/terapia , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Terapia por Ultrasonido/métodos
9.
Sci Technol Adv Mater ; 17(1): 431-436, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27877893

RESUMEN

We have developed a self-assembled fluorescent cluster comprising a seminaphthorhodafluor (SNARF) derivative protected by a photoremovable o-nitrobenzyl group. Prior to UV irradiation, a colorless and nonfluorescent cluster was spontaneously assembled in aqueous solution. After UV irradiation, the self-assembled cluster remained intact and showed a large enhancement in pH-responsive fluorescence. The unique pH responsive fluorescent cluster could be used as a dual-emissive ratiometric fluorescent pH probe not only in the test tube but also in HeLa cell cultures.

10.
Plant Physiol ; 166(1): 80-90, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25077796

RESUMEN

Prenyl residues confer divergent biological activities such as antipathogenic and antiherbivorous activities on phenolic compounds, including flavonoids, coumarins, and xanthones. To date, about 1,000 prenylated phenolics have been isolated, with these compounds containing various prenyl residues. However, all currently described plant prenyltransferases (PTs) have been shown specific for dimethylallyl diphosphate as the prenyl donor, while most of the complementary DNAs encoding these genes have been isolated from the Leguminosae. In this study, we describe the identification of a novel PT gene from lemon (Citrus limon), ClPT1, belonging to the homogentisate PT family. This gene encodes a PT that differs from other known PTs, including flavonoid-specific PTs, in polypeptide sequence. This membrane-bound enzyme was specific for geranyl diphosphate as the prenyl donor and coumarin as the prenyl acceptor. Moreover, the gene product was targeted to plastid in plant cells. To our knowledge, this is the novel aromatic PT specific to geranyl diphosphate from citrus species.


Asunto(s)
Citrus/enzimología , Dimetilaliltranstransferasa/metabolismo , Difosfatos/metabolismo , Diterpenos/metabolismo , Citrus/genética , Dimetilaliltranstransferasa/genética , Datos de Secuencia Molecular , Filogenia , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Ruta , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
12.
J Clin Biochem Nutr ; 54(2): 75-80, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24688214

RESUMEN

The scavenging activity of rat plasma against hyperthermia-induced reactive oxygen species was tested. The glutathione-dependent reduction of a nitroxyl radical, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl, which was restricted by adding superoxide dismutase or by deoxygenating the reaction mixture, was applied to an index of superoxide (O2 (•-)) generation. A reaction mixture containing 0.1 mM 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl and 1 mM glutathione was prepared using 100 mM phosphate buffer containing 0.05 mM diethylenetriaminepentaacetic acid. The reaction mixture was kept in a screw-top vial and incubated in a water bath at 37 or 44°C. The time course of the electron paramagnetic resonance signal of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl in the reaction mixture was measured by an X-band EPR spectrometer (JEOL, Tokyo, Japan). When the same experiment was performed using rat plasma instead of 100 mM PB, the glutathione-dependent reduction of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl, i.e., generation of O2 (•-), was not obtained. Only the first-order decay reduction of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl, which indicates direct reduction of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl, was obtained in rat plasma. Adding 0.5% albumin to the phosphate buffer reaction mixture could almost completely inhibit O2 (•-) generation at 37°C. However, addition of 0.5% albumin could not inhibit O2 (•-) generation at 44°C, i.e., hyperthermic temperature. Ascorbic acid also showed inhibition of O2 (•-) generation by 0.01 mM at 37°C, but 0.02 mM or more could inhibit O2 (•-) generation at 44°C. A higher concentration of ascorbic acid showed first-order reduction, i.e., direct one-electron reduction, of 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl. Hyperthermia-induced O2 (•-) generation in rat plasma can be mostly inhibited by albumin and ascorbic acid in the plasma.

13.
Exp Cell Res ; 318(13): 1554-63, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22472348

RESUMEN

Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P<0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P<0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules.


Asunto(s)
Antineoplásicos/farmacología , Óxidos N-Cíclicos/farmacología , Citotoxinas/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Quinoxalinas/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Adv Exp Med Biol ; 789: 385-389, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23852519

RESUMEN

We describe our solution for removal of the low-density lipoprotein (LDL) depot contained in proteins and lipids as a 'druggable' target for atherosclerotic cardiovascular diseases by neutron dynamic therapy (NDT), which we developed using boron tracedrugs for NDT against bovine serum albumin as a model protein. Thus, we examined, among our developed boron tracedrugs, a boron-containing curcuminoid derivative UTX-51, to destroy freshly isolated human LDL dynamically under irradiated thermal neutron to obtain a decreased intensity of band of LDL treated with UTX-51 and thermal neutron irradiation in their SDS-PAGE and electrophoresis analysis. These results suggest that UTX-51 might be a novel candidate of 'beyond chemical' therapeutic agents for atherosclerotic cardiovascular disease.


Asunto(s)
Terapia por Captura de Neutrón de Boro/métodos , Boro/uso terapéutico , Lipoproteínas LDL/metabolismo , Neutrones/uso terapéutico , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/radioterapia , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/radioterapia , Bovinos , Humanos , Albúmina Sérica Bovina/metabolismo
15.
Cancer Med ; 12(8): 9668-9683, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36722116

RESUMEN

BACKGROUND: Synovial sarcoma (SS) has limited treatment options and there is an urgent need to develop a novel therapeutic strategy to treat SS. Blue light (BL) has been shown to inhibit the growth of several cancer cells. However, the efficacy of BL in soft tissue sarcomas such as SS has not been demonstrated, and the detailed mechanism underlying the antitumor activity of BL is not fully understood. In this study, we investigated the antitumor effect of BL on SS. METHODS: Human SS cell lines were continuously irradiated with BL using light-emitting diodes (LEDs) in an incubator for in vitro analysis. The chicken chorioallantoic membrane (CAM) tumors and xenograft tumors in mice were subjected to daily BL irradiation with LEDs. RESULTS: BL caused growth inhibition of SS cells and histological changes in CAM tumors. BL also suppressed the migration and invasion abilities of SS cells. The type of cell death in SS cells was revealed to be apoptosis. Furthermore, BL induced excessive production of reactive oxygen species (ROS) in mitochondria, resulting in oxidative stress and malfunctioned mitochondria. Reducing the production of ROS using N-acetylcysteine (NAC), a ROS scavenger, attenuated the inhibitory effect of BL on SS cells and mitochondrial dysfunction. In addition, BL induced autophagy, which was suppressed by the administration of NAC. The autophagy inhibitor of 3-methyladenine and small interfering RNA against the autophagy marker light chain 3B facilitated apoptotic cell death. Moreover, BL suppressed tumor growth in a mouse xenograft model. CONCLUSION: Taken together, our results revealed that BL induced apoptosis via the ROS-mitochondrial signaling pathway, and autophagy was activated in response to the production of ROS, which protected SS cells from apoptosis. Therefore, BL is a promising candidate for the development of an antitumor therapeutic strategy targeting SS.


Asunto(s)
Sarcoma Sinovial , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Sarcoma Sinovial/terapia , Sarcoma Sinovial/patología , Apoptosis , Autofagia , Mitocondrias , Línea Celular Tumoral
16.
J Cereb Blood Flow Metab ; 43(4): 531-541, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36545833

RESUMEN

Cerebral ischemia triggers inflammatory changes, and early complications and unfavorable outcomes of endovascular thrombectomy for brain occlusion promote the recruitment of various cell types to the ischemic area. Although anti-inflammatory M2-type macrophages are thought to exert protective effects against cerebral ischemia, little has been clarified regarding the significance of post-ischemic phase-dependent modulation of M2-type macrophages. To test our hypothesis that post-ischemic phase-dependent modulation of macrophages represents a potential therapy against ischemic brain damage, the effects on rats of an M2-type macrophage-specific activator, Gc-protein macrophage-activating factor (GcMAF), were compared with vehicle-treated control rats in the acute (day 0-6) or subacute (day 7-13) phase after ischemia induction. Acute-phase GcMAF treatment augmented both anti-inflammatory CD163+ M2-type- and pro-inflammatory CD16+ M1-type macrophages, resulting in no beneficial effects. Conversely, subacute-phase GcMAF injection increased only CD163+ M2-type macrophages accompanied by elevated mRNA levels of arginase-1 and interleukin-4. M2-type macrophages co-localized with CD36+ phagocytic cells led to clearance of the infarct area, which were abrogated by clodronate-liposomes. Expression of survival-related molecules on day 28 at the infarct border was augmented by GcMAF. These data provide new and important insights into the significance of M2-type macrophage-specific activation as post-ischemic phase-dependent therapy.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Animales , Ratas , Antiinflamatorios/uso terapéutico , Encéfalo/metabolismo , Lesiones Encefálicas/etiología , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral/complicaciones , Macrófagos/metabolismo
17.
J Chem Neuroanat ; 130: 102258, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36925083

RESUMEN

BACKGROUND: Cerebral microbleeds (CMBs) due to traumatic brain injuries (TBI) have been shown to lead to cognitive decline and impairment. CMBs caused by TBI may be associated with pathophysiological mechanisms involving inflammation and the accumulation of amyloid-ß (Aß), tau, and phosphorylated tau (p-tau), contributing to cognitive abnormalities. However, their relationships remain unclear. OBJECTIVES: To test our hypothesis that Aß, tau, and p-tau are accumulated and regulated separately in mice with injuries imitating CMBs from TBI, we studied. METHODS: Seven-week-old C57BL/6 male mice were injected with 15 µL of heparinized autologous blood or saline by micro-syringe into the front lobe. Expression profiles and regulation of Aß, tau, and p-tau were assessed immunohistochemically over time. RESULTS: On day 7 after blood injection, Iba-1+ and S100B+ cells in damaged cortex adjacent to the injection site were higher than saline injection group and non-injected sham. On days 3-14, Aß deposition were gradually increased but normalized by day 28. In contrast, tau/p-tau deposition gradually increased during days 14-28 and dispersed along the corticomedullary junction adjacent to hem deposits, indicating different expression profiles from Aß. Deposits of Aß, but not tau/p-tau, were phagocytosed by CD163+ macrophages increased by Gc-protein macrophage-activating factor during days 7-28, suggesting different mechanisms of deposition and regulation between Aß and tau/p-tau. CONCLUSION: Deposition and regulation differ between Aß and tau/p-tau in mice with injuries mimicking CMBs from TBI. Further clarification of relationships between the pathologies of cognitive impairment and their neurodegenerative consequences is needed.


Asunto(s)
Encéfalo , Proteínas tau/metabolismo , Fosfoproteínas/metabolismo , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Endogámicos C57BL , Masculino , Animales , Ratones , Lesiones Traumáticas del Encéfalo/metabolismo , Jeringas , Modelos Animales de Enfermedad
18.
Biochem Biophys Res Commun ; 417(1): 393-8, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22166201

RESUMEN

Female flowers of hop (Humulus lupulus L.) develop a large number of glandular trichomes called lupulin glands that contain a variety of prenylated compounds such as α- and ß-acid (humulone and lupulone, respectively), as well as xanthohumol, a chalcone derivative. These prenylated compounds are biosynthesized by prenyltransferases catalyzing the transfer of dimethylallyl moiety to aromatic substances. In our previous work, we found HlPT-1 a candidate gene for such a prenyltransferase in a cDNA library constructed from lupulin-enriched flower tissues. In this study, we have characterized the enzymatic properties of HlPT-1 using a recombinant protein expressed in baculovirus-infected insect cells. HlPT-1 catalyzed the first transfer of dimethylallyl moiety to phloroglucinol derivatives, phlorisovalerophenone, phlorisobutyrophenone and phlormethylbutanophenone, leading to the formation of humulone and lupulone derivatives. HlPT-1 also recognized naringenin chalcone as a flavonoid substrate to yield xanthohumol, and this broad substrate specificity is a unique character of HlPT-1 that is not seen in other reported flavonoid prenyltransferases, all of which show strict specificity for their aromatic substrates. Moreover, unlike other aromatic substrate prenyltransferases, HlPT-1 revealed an exclusive requirement for Mg(2+) as a divalent cation for its enzymatic activity and also showed exceptionally narrow optimum pH at around pH 7.0.


Asunto(s)
Membrana Celular/enzimología , Ciclohexenos/metabolismo , Dimetilaliltranstransferasa/metabolismo , Humulus/enzimología , Terpenos/metabolismo , Dimetilaliltranstransferasa/química , Especificidad por Sustrato
19.
J Surg Res ; 172(1): 116-22, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20855083

RESUMEN

BACKGROUND: A high incidence of recurrence after treatment is the most serious problem in hepatocellular carcinoma (HCC). Therefore, a new strategy for the treatment of the disease is needed. The aim of the present study was to investigate whether vitamin D binding protein-macrophage activating factor (DBP-maf) is able to inhibit the growth of HCC. METHODS: The effects of DBP-maf on endothelial cells and macrophage were evaluated by WST-1 assay and phagocytosis assay, respectively. Human HCC cells (HepG2) were implanted into the dorsum of severe combined immunodeficiency (SCID) mice. These mice were divided into control and DBP-maf treatment groups (n = 10/group). The mice in the treatment group received 40 ng/kg/d of DBP-maf for 21 d. RESULTS: DBP-maf showed anti-proliferative activity against endothelial cells and also activated phagocytosis by macrophages. DBP-maf inhibited the growth of HCC cells (treatment group: 126 ± 18mm(3), untreated group: 1691.5 ± 546.9mm(3), P = 0.0077). Histologic examinations of the tumors revealed the microvessel density was reduced and more macrophage infiltration was demonstrated in the tumor of mice in the treatment group. CONCLUSION: DBP-maf has at least two novel functions, namely, an anti-angiogenic activity and tumor killing activity through the activation of macrophages. DBP-maf may therefore represent a new strategy for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Factores Activadores de Macrófagos/uso terapéutico , Proteína de Unión a Vitamina D/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Humanos , Factores Activadores de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones SCID , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Fagocitosis/efectos de los fármacos , Ratas , Proteína de Unión a Vitamina D/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Biosci Biotechnol Biochem ; 76(7): 1389-93, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22785469

RESUMEN

Coumarins, a large group of polyphenols, play important roles in the defense mechanisms of plants, and they also exhibit various biological activities beneficial to human health, often enhanced by prenylation. Despite the high abundance of prenylated coumarins in citrus fruits, there has been no report on coumarin-specific prenyltransferase activity in citrus. In this study, we detected both O- and C-prenyltransferase activities of coumarin substrates in a microsome fraction prepared from lemon (Citrus limon) peel, where large amounts of prenylated coumarins accumulate. Bergaptol was the most preferred substrate out of various coumarin derivatives tested, and geranyl diphosphate (GPP) was accepted exclusively as prenyl donor substrate. Further enzymatic characterization of bergaptol 5-O-geranyltransferase activity revealed its unique properties: apparent K(m) values for GPP (9 µM) and bergaptol (140 µM) and a broad divalent cation requirement. These findings provide information towards the discovery of a yet unidentified coumarin-specific prenyltransferase gene.


Asunto(s)
Citrus/enzimología , Cumarinas/metabolismo , Dimetilaliltranstransferasa/aislamiento & purificación , Furocumarinas/metabolismo , Geraniltranstransferasa/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Cromatografía Líquida de Alta Presión , Citrus/química , Cumarinas/química , Dimetilaliltranstransferasa/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Furocumarinas/química , Geraniltranstransferasa/metabolismo , Humanos , Cinética , Microsomas/química , Microsomas/enzimología , Proteínas de Plantas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA