Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chaos Solitons Fractals ; 159: 112178, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35578625

RESUMEN

COVID-19 has shown that quarantine (or self-isolation) may be the only available tool against an unknown infectious disease if neither an effective vaccine nor anti-viral medication is available. Motivated by the fact that a considerable number of people were not compliant with the request for self-quarantine made by public authorities, this study used a multi-agent simulation model, whose results were validated by theory work, which highlights how and to what extent such an anti-social behavior hampers the confinement of a disease. Our framework quantifies two important scenarios: in one scenario a certain number of individuals totally ignore quarantine, whereas in the second scenario a larger number of individuals partially ignore the imposed policy. Our results reveal that the latter scenario can be more hazardous even if the total amount of social deficit of activity-measured by the total number of severed links in a physical network-would be same as the former scenario has, of which quantitative extent is dependent on the fraction of asymptomatic infected cases and the level of quarantine intensity the government imposing. Our findings have significance not only to epidemiology but also to research in the broader field of network science. PACS numbers: Theory and modeling; computer simulation, 87.15.Aa; Dynamics of evolution, 87.23.Kg.

2.
Appl Math Comput ; 431: 127328, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35756537

RESUMEN

COVID-19 has emphasized that a precise prediction of a disease spreading is one of the most pressing and crucial issues from a social standpoint. Although an ordinary differential equation (ODE) approach has been well established, stochastic spreading features might be hard to capture accurately. Perhaps, the most important factors adding such stochasticity are the effect of the underlying networks indicating physical contacts among individuals. The multi-agent simulation (MAS) approach works effectively to quantify the stochasticity. We systematically investigate the stochastic features of epidemic spreading on homogeneous and heterogeneous networks. The study quantitatively elucidates that a strong microscopic locality observed in one- and two-dimensional regular graphs, such as ring and lattice, leads to wide stochastic deviations in the final epidemic size (FES). The ensemble average of FES observed in this case shows substantial discrepancies with the results of ODE based mean-field approach. Unlike the regular graphs, results on heterogeneous networks, such as Erdos-Rényi random or scale-free, show less stochastic variations in FES. Also, the ensemble average of FES in heterogeneous networks seems closer to that of the mean-field result. Although the use of spatial structure is common in epidemic modeling, such fundamental results have not been well-recognized in literature. The stochastic outcomes brought by our MAS approach may lead to some implications when the authority designs social provisions to mitigate a pandemic of un-experienced infectious disease like COVID-19.

3.
Sci Rep ; 12(1): 8111, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581274

RESUMEN

Vaccination, if available, is the best preventive measure against infectious diseases. It is, however, needed to prudently design vaccination strategies to successfully mitigate the disease spreading, especially in a time when vaccine scarcity is inevitable. Here we investigate a vaccination strategy on a scale-free network where susceptible individuals, who have social connections with infected people, are being detected and given vaccination before having any physical contact with the infected one. Nevertheless, detecting susceptible (also infected ones) may not be perfect due to the lack of information. Also, vaccines do not confer perfect immunity in reality. We incorporate these pragmatic hindrances in our analysis. We find that if vaccines are highly efficacious, and the detecting error is low, then it is possible to confine the disease spreading-by administering a less amount of vaccination-within a short period. In a situation where tracing susceptible seems difficult, then expanding the range for vaccination targets can be socially advantageous only if vaccines are effective enough. Our analysis further reveals that a more frequent screening for vaccination can reduce the effect of detecting errors. In the end, we present a link percolation-based analytic method to approximate the results of our simulation.


Asunto(s)
Eficacia de las Vacunas , Vacunas , Simulación por Computador , Humanos , Vacunación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA