Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 13(9): 10660-10679, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23109815

RESUMEN

Reactive oxygen species (ROS) are increasingly being implicated in the regulation of cellular signaling cascades. Intracellular ROS fluxes are associated with cellular function ranging from proliferation to cell death. Moreover, the importance of subtle, spatio-temporal shifts in ROS during localized cellular signaling events is being realized. Understanding the biochemical nature of the ROS involved will enhance our knowledge of redox-signaling. An ideal intracellular sensor should therefore resolve real-time, localized ROS changes, be highly sensitive to physiologically relevant shifts in ROS and provide specificity towards a particular molecule. For in vivo applications issues such as bioavailability of the probe, tissue penetrance of the signal and signal-to-noise ratio also need to be considered. In the past researchers have heavily relied on the use of ROS-sensitive fluorescent probes and, more recently, genetically engineered ROS sensors. However, there is a great need to improve on current methods to address the above issues. Recently, the field of molecular sensing and imaging has begun to take advantage of the unique physico-chemical properties of nanoparticles and nanotubes. Here we discuss the recent advances in the use of these nanostructures as alternative platforms for ROS sensing, with particular emphasis on intracellular and in vivo ROS detection and quantification.


Asunto(s)
Técnicas Biosensibles/métodos , Nanopartículas/química , Nanotubos/química , Especies Reactivas de Oxígeno/análisis , Animales , Técnicas Biosensibles/instrumentación , Humanos , Espacio Intracelular/química , Sustancias Luminiscentes/química , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Espectrometría Raman/instrumentación , Espectrometría Raman/métodos
2.
Cancer Res ; 75(22): 4973-84, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26359457

RESUMEN

Epithelial ovarian cancer (EOC) is the fourth leading cause of death due to cancer in women and comprises distinct histologic subtypes, which vary widely in their genetic profiles and tissues of origin. It is therefore imperative to understand the etiology of these distinct diseases. Ovarian clear cell carcinoma (OCCC), a very aggressive subtype, comprises >10% of EOCs. In the present study, we show that mitochondrial superoxide dismutase (Sod2) is highly expressed in OCCC compared with other EOC subtypes. Sod2 is an antioxidant enzyme that converts highly reactive superoxide (O2 (•-)) to hydrogen peroxide (H2O2) and oxygen (O2), and our data demonstrate that Sod2 is protumorigenic and prometastatic in OCCC. Inhibiting Sod2 expression reduces OCCC ES-2 cell tumor growth and metastasis in a chorioallantoic membrane (CAM) model. Similarly, cell proliferation, migration, spheroid attachment and outgrowth on collagen, and Akt phosphorylation are significantly decreased with reduced expression of Sod2. Mechanistically, we show that Sod2 has a dual function in supporting OCCC tumorigenicity and metastatic spread. First, Sod2 maintains highly functional mitochondria, by scavenging O2 (•-), to support the high metabolic activity of OCCC. Second, Sod2 alters the steady-state ROS balance to drive H2O2-mediated migration. While this higher steady-state H2O2 drives prometastatic behavior, it also presents a doubled-edged sword for OCCC, as it pushed the intracellular H2O2 threshold to enable more rapid killing by exogenous sources of H2O2. Understanding the complex interaction of antioxidants and ROS may provide novel therapeutic strategies to pursue for the treatment of this histologic EOC subtype.


Asunto(s)
Adenocarcinoma de Células Claras/enzimología , Adenocarcinoma de Células Claras/patología , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Superóxido Dismutasa/metabolismo , Western Blotting , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Invasividad Neoplásica/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Estrés Oxidativo/fisiología , ARN Interferente Pequeño , Especies Reactivas de Oxígeno/metabolismo
3.
PLoS One ; 9(5): e98479, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24858344

RESUMEN

Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that altered mitochondrial fission dynamics represents a phenotype of a subpopulation of EOCs.


Asunto(s)
Glucólisis , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Neoplasias Ováricas/metabolismo , Consumo de Oxígeno , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/patología , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/patología , Ionóforos de Protónes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA