Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Liposome Res ; : 1-15, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459750

RESUMEN

Recently, metformin (Met) has shown to have antineoplastic properties in cancer treatment by improving hypoxic tumor conditions, and causing reduction in the synthesis of biomolecules, which are vital for cancer growth. However, as an orally administered drug, Met has low bioavailability and rapid renal clearance. Thus, the goal of this study was to vectorize Met inside liposomes in the context of triple negative breast cancer (TNBC), which currently lacks treatment options when compared to other types of breast cancer. Vectorization of Met inside liposomes was done using Bangham method by implementing double design of experiment methodology to increase Met drug loading (minimum-run resolution V characterization design and Box-Behnken design), as it is generally extremely low for hydrophilic molecules. Optimization of Met-loaded liposome synthesis was successfully achieved with drug loading of 190 mg/g (19% w/w). The optimal Met-liposomes were 170 nm in diameter with low PdI (< 0.1) and negative surface charge (-20 mV), exhibiting sustained Met release at pH 7.4. The liposomal Met delivery system was stable over several months, and successfully reduced TNBC cell proliferation due to the encapsulated drug. This study is one the first reports addressing liposome formulation through thin-film hydration using two design of experiment methods aiming to increase drug loading of Met.

2.
Front Biosci (Landmark Ed) ; 29(1): 28, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38287838

RESUMEN

BACKGROUND: The centrosome is the main center of the organization of microtubules (MT) in the cell, the origin for the formation of flagella and cilia, as well as the site of many regulatory intracellular processes. In diploid cells, the centrosome includes two centrioles connected to some additional structures and surrounded by pericentriolar material. METHODS: The ultrastructure of the cells was studied using transmission electron microscopy on serial ultrathin sections. RESULTS: Here, using transmission electron microscopy on a complete series of ultrathin sections of the centrosome region, we studied the relation between the number of centrioles and ploidy in diploid cells of female wasps and haploid cells of male in the parasitoid wasp Anisopteromalus calandrae (Hymenoptera). It showed that the haploid cells of the male insect have the same number of centrioles as the diploid cells of the female. CONCLUSIONS: It can be concluded that there is no strict correlation between the number of chromosome sets (ploidy) and the number of centrioles in haplodiploid insects.


Asunto(s)
Centriolos , Avispas , Animales , Masculino , Femenino , Centriolos/genética , Centriolos/ultraestructura , Avispas/genética , Haploidia , Diploidia , Centrosoma
3.
Virus Evol ; 10(1): veae022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617843

RESUMEN

Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA