Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Phys Rev Lett ; 131(25): 250802, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181346

RESUMEN

We consider communication scenarios where one party sends quantum states of known dimensionality D, prepared with an untrusted apparatus, to another, distant party, who probes them with uncharacterized measurement devices. We prove that, for any ensemble of reference pure quantum states, there exists one such prepare-and-measure scenario and a linear functional W on its observed measurement probabilities, such that W can only be maximized if the preparations coincide with the reference states, modulo a unitary or an antiunitary transformation. In other words, prepare-and-measure scenarios allow one to "self-test" arbitrary ensembles of pure quantum states. Arbitrary extreme D-dimensional quantum measurements, or sets thereof, can be similarly self-tested. Our results rely on a robust generalization of Wigner's theorem, a well-known result in particle physics that characterizes physical symmetries.

2.
Phys Rev Lett ; 125(2): 020402, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32701319

RESUMEN

We consider bipartite entangled states that cannot outperform separable states in any linear interferometer. Then, we show that these states can still be more useful metrologically than separable states if several copies of the state are provided or an ancilla is added to the quantum system. We present a general method to find the local Hamiltonian for which a given quantum state performs the best compared to separable states. We obtain analytically the optimal Hamiltonian for some quantum states with a high symmetry. We show that all bipartite entangled pure states outperform separable states in metrology. Some potential applications of the results are also suggested.

3.
Phys Rev Lett ; 120(2): 020506, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376687

RESUMEN

We show that multipartite quantum states that have a positive partial transpose with respect to all bipartitions of the particles can outperform separable states in linear interferometers. We introduce a powerful iterative method to find such states. We present some examples for multipartite states and examine the scaling of the precision with the particle number. Some bipartite examples are also shown that possess an entanglement very robust to noise. We also discuss the relation of metrological usefulness to Bell inequality violation. We find that quantum states that do not violate any Bell inequality can outperform separable states metrologically. We present such states with a positive partial transpose, as well as with a nonpositive partial transpose.

4.
Phys Rev Lett ; 120(18): 180402, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775367

RESUMEN

We present the first experimental confirmation of the quantum-mechanical prediction of stronger-than-binary correlations. These are correlations that cannot be explained under the assumption that the occurrence of a particular outcome of an n≥3-outcome measurement is due to a two-step process in which, in the first step, some classical mechanism precludes n-2 of the outcomes and, in the second step, a binary measurement generates the outcome. Our experiment uses pairs of photonic qutrits distributed between two laboratories, where randomly chosen three-outcome measurements are performed. We report a violation by 9.3 standard deviations of the optimal inequality for nonsignaling binary correlations.

5.
Phys Rev Lett ; 117(19): 190402, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27858440

RESUMEN

Constructing local hidden variable (LHV) models for entangled quantum states is a fundamental problem, with implications for the foundations of quantum theory and for quantum information processing. It is, however, a challenging problem, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to any entangled state and considering continuous sets of measurements. This leads to a sequence of tests which, in the limit, fully captures the set of quantum states admitting a LHV model. Similar methods are developed for local hidden state models. We illustrate the practical relevance of these methods with several examples.

6.
Phys Rev Lett ; 117(26): 260401, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28059533

RESUMEN

Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.

7.
Phys Rev Lett ; 115(2): 020501, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26207454

RESUMEN

We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in Bell scenarios where the dimension of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in Gallego et al., Phys. Rev. Lett. 105, 230501 (2010). Finally, we propose a new dimension witness that can distinguish between classical, real, and complex two-level systems.

8.
Phys Rev Lett ; 115(19): 190403, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26588364

RESUMEN

The discovery of postquantum nonlocality, i.e., the existence of nonlocal correlations that are stronger than any quantum correlations but nevertheless consistent with the no-signaling principle, has deepened our understanding of the foundations of quantum theory. In this work, we investigate whether the phenomenon of Einstein-Podolsky-Rosen steering, a different form of quantum nonlocality, can also be generalized beyond quantum theory. While post-quantum steering does not exist in the bipartite case, we prove its existence in the case of three observers. Importantly, we show that postquantum steering is a genuinely new phenomenon, fundamentally different from postquantum nonlocality. Our results provide new insight into the nonlocal correlations of multipartite quantum systems.

9.
Phys Rev Lett ; 113(16): 160402, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25361238

RESUMEN

We investigate the relation between the incompatibility of quantum measurements and quantum nonlocality. We show that a set of measurements is not jointly measurable (i.e., incompatible) if and only if it can be used for demonstrating Einstein-Podolsky-Rosen steering, a form of quantum nonlocality. Moreover, we discuss the connection between Bell nonlocality and joint measurability, and give evidence that both notions are inequivalent. Specifically, we exhibit a set of incompatible quantum measurements and show that it does not violate a large class of Bell inequalities. This suggests the existence of incompatible quantum measurements which are Bell local, similarly to certain entangled states which admit a local hidden variable model.

10.
Phys Rev Lett ; 113(4): 040401, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25105599

RESUMEN

Self-testing refers to the fact that, in some quantum devices, both states and measurements can be assessed in a black-box scenario, on the sole basis of the observed statistics, i.e., without reference to any prior device calibration. Only a few examples of self-testing are known, and they just provide nontrivial assessment for devices performing unrealistically close to the ideal case. We overcome these difficulties by approaching self-testing with the semidefinite programing hierarchy for the characterization of quantum correlations. This allows us to improve dramatically the robustness of previous self-testing schemes; e.g., we show that a Clauser-Horne-Shimony-Holt violation larger than 2.57 certifies a singlet fidelity of more than 70%. In addition, the versatility of the tool brings about self-testing of hitherto impossible cases, such as the robust self-testing of nonmaximally entangled two-qutrit states in the Collins-Gisin-Linden-Massar-Popescu scenario.

11.
Phys Rev Lett ; 113(8): 080405, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192081

RESUMEN

Certifying the entanglement of quantum states with Bell inequalities allows one to guarantee the security of quantum information protocols independently of imperfections in the measuring devices. Here, we present a similar procedure for witnessing entangled measurements, which play a central role in many quantum information tasks. Our procedure is termed semi-device-independent, as it uses uncharacterized quantum preparations of fixed Hilbert space dimension. Using a photonic setup, we experimentally certify an entangled measurement using only measurement statistics. We also apply our techniques to certify unentangled but nevertheless inherently quantum measurements.

12.
Phys Rev Lett ; 110(15): 150501, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25167234

RESUMEN

Dimension witnesses allow one to test the dimension of an unknown physical system in a device-independent manner, that is, without placing assumptions about the functioning of the devices used in the experiment. Here we present simple and general dimension witnesses for quantum systems of arbitrary Hilbert space dimension. Our approach is deeply connected to the problem of quantum state discrimination, hence establishing a strong link between these two research topics. Finally, our dimension witnesses can distinguish between classical and quantum systems of the same dimension, making them potentially useful for quantum information processing.

13.
Sci Rep ; 13(1): 13200, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580385

RESUMEN

We address the problem of testing the quantumness of two-dimensional systems in the prepare-and-measure (PM) scenario, using a large number of preparations and a large number of measurement settings, with binary outcome measurements. In this scenario, we introduce constants, which we relate to the Grothendieck constant of order 3. We associate them with the white noise resistance of the prepared qubits and to the critical detection efficiency of the measurements performed. Large-scale numerical tools are used to bound the constants. This allows us to obtain new bounds on the minimum detection efficiency that a setup with 70 preparations and 70 measurement settings can tolerate.

14.
Phys Rev Lett ; 108(3): 030403, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22400720

RESUMEN

Entanglement and nonlocality are both fundamental aspects of quantum theory, and play a prominent role in quantum information science. The exact relation between entanglement and nonlocality is, however, still poorly understood. Here we make progress in this direction by showing that, contrary to what previous work suggested, quantum nonlocality does not imply entanglement distillability. Specifically, we present analytically a 3-qubit entangled state that is separable along any bipartition. This implies that no bipartite entanglement can be distilled from this state, which is thus fully bound entangled. Then we show that this state nevertheless violates a Bell inequality. Our result also disproves the multipartite version of a long-standing conjecture made by Peres.

15.
Phys Rev Lett ; 108(11): 110501, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22540444

RESUMEN

We show that the rich structure of multipartite entanglement can be tested following a device-independent approach. Specifically we present Bell inequalities for distinguishing between different types of multipartite entanglement, without placing any assumptions on the measurement devices used in the protocol, in contrast with usual entanglement witnesses. We first address the case of three qubits and present Bell inequalities that can be violated by W states but not by Greenberger-Horne-Zeilinger states, and vice versa. Next, we devise 'subcorrelation Bell inequalities' for any number of parties, which can provably not be violated by a broad class of multipartite entangled states (generalizations of Greenberger-Horne-Zeilinger states), but for which violations can be obtained for W states. Our results give insight into the nonlocality of W states. The simplicity and robustness of our tests make them appealing for experiments.

16.
Phys Rev Lett ; 106(6): 060403, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21405447

RESUMEN

We find two two-qubit bipartite states ρ1, ρ2 such that arbitrarily many copies of one or the other cannot exhibit nonlocal correlations in a two-setting-two-outcome Bell scenario. However, the bipartite state ρ1 ⊗ ρ2 violates the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).] by an amount of 2.023. We also identify a CHSH-local state ρ such that ρ⊗2 is CHSH inequality-violating. The tools employed can be easily adapted to find instances of nonlocality activation in arbitrary Bell scenarios.

17.
J Chem Phys ; 135(8): 084101, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21895153

RESUMEN

Various ab initio computations, as, e.g., in G. J. Halász and Á. Vibók, Int. J. Quantum Chem. 111, 342 (2011), have shown that in molecules of the type (HCCH)(+), when the extremal H atoms are distorted from a linear form but maintain a planar geometry, a pair of conical intersections (ci) occur at such positions that the ratios of the distortional coordinates of the two atoms are in the two ci's reciprocals of each other. These computations have here been extended to locate the ci's also for HCNH. The two groups of results are explained by simple analytic perturbational expressions for the energy differences of the lowest adjacent electronic states, with inclusion of excited state effects.

18.
Phys Rev Lett ; 104(6): 060401, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20366808

RESUMEN

We show that the detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum systems of dimension larger than two. We introduce a series of asymmetric Bell tests for which an efficiency arbitrarily close to 1/N can be tolerated using N-dimensional systems, and a symmetric Bell test for which the efficiency can be lowered down to 61.8% using four-dimensional systems. Experimental perspectives for our schemes look promising considering recent progress in atom-photon entanglement and in photon hyperentanglement.

19.
Sci Adv ; 6(16): eaaw6664, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494591

RESUMEN

Self-testing represents the strongest form of certification of a quantum system. Here, we theoretically and experimentally investigate self-testing of nonprojective quantum measurements. That is, how can one certify, from observed data only, that an uncharacterized measurement device implements a desired nonprojective positive-operator valued measure (POVM). We consider a prepare-and-measure scenario with a bound on the Hilbert space dimension and develop methods for (i) robustly self-testing extremal qubit POVMs and (ii) certifying that an uncharacterized qubit measurement is nonprojective. Our methods are robust to noise and thus applicable in practice, as we demonstrate in a photonic experiment. Specifically, we show that our experimental data imply that the implemented measurements are very close to certain ideal three- and four-outcome qubit POVMs and hence non-projective. In the latter case, the data certify a genuine four-outcome qubit POVM. Our results open interesting perspective for semi-device-independent certification of quantum devices.

20.
Sci Rep ; 6: 21634, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26880376

RESUMEN

In this paper, we investigate the communication cost of reproducing Einstein-Podolsky-Rosen (EPR) steering correlations arising from bipartite quantum systems. We characterize the set of bipartite quantum states which admits a local hidden state model augmented with c bits of classical communication from an untrusted party (Alice) to a trusted party (Bob). In case of one bit of information (c = 1), we show that this set has a nontrivial intersection with the sets admitting a local hidden state and a local hidden variables model for projective measurements. On the other hand, we find that an infinite amount of classical communication is required from an untrusted Alice to a trusted Bob to simulate the EPR steering correlations produced by a two-qubit maximally entangled state. It is conjectured that a state-of-the-art quantum experiment would be able to falsify two bits of communication this way.


Asunto(s)
Teoría de la Información , Modelos Teóricos , Teoría Cuántica , Conceptos Matemáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA