Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Surg Oncol ; 30(2): 804-813, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36344711

RESUMEN

BACKGROUND: Nanoliposomal irinotecan (nal-IRI) is a promising novel hyperthermic intraperitoneal chemotherapy (HIPEC) agent given its enhanced efficacy against gastrointestinal tumors, safety profile, thermo-synergy, and heat stability. This report describes the first in-human phase 1 clinical trial of nal-IRI during cytoreductive surgery (CRS) and HIPEC. METHODS: Patients with peritoneal surface disease (PSD) from appendiceal and colorectal neoplasms were enrolled in a 3 + 3 dose-escalation trial using nal-IRI (70-280 mg/m2) during HIPEC for 30 min at 41 ± 1 °C. The primary outcome was safety. The secondary outcomes were pharmacokinetics (PK) and disease-free survival. Adverse events (AEs) categorized as grade 2 or higher were recorded. The serious AEs (SAEs) were mortality, grade ≥ 3 AEs, and dose-limiting toxicity (DLT). Irinotecan and active metabolite SN38 were measured in plasma and peritoneal washings. RESULTS: The study enrolled 18 patients, who received nal-IRI during HIPEC at 70 mg/m2 (n = 3), 140 mg/m2 (n = 6), 210 mg/m2 (n = 3), and 280 mg/m2 (n = 6). No DLT or mortality occurred. The overall morbidity for CRS/HIPEC was 39% (n = 7). Although one patient experienced neutropenia, no AE (n = 131) or SAE (n = 3) was definitively attributable to nal-IRI. At 280 mg/m2, plasma irinotecan and SN38 measurements showed maximum concentrations of 0.4 ± 0.6 µg/mL and 3.0 ± 2.4 ng/mL, a median time to maximum concentration of 24.5 and 26 h, and areas under the curve of 22.6 h*µg/mL and 168 h*ng/mL, respectively. At the 6-month follow-up visit, 83% (n = 15) of the patients remained disease-free. CONCLUSIONS: In this phase 1 HIPEC trial (NCT04088786), nal-IRI was observed to be safe, and PK profiling showed low systemic absorption overall. These data support future studies testing the efficacy of nal-IRI in CRS/HIPEC.


Asunto(s)
Neoplasias Colorrectales , Hipertermia Inducida , Neoplasias Peritoneales , Humanos , Irinotecán/uso terapéutico , Terapia Combinada , Calor , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Procedimientos Quirúrgicos de Citorreducción/efectos adversos , Neoplasias Colorrectales/patología , Hipertermia Inducida/efectos adversos , Tasa de Supervivencia
2.
Am J Hum Genet ; 99(1): 22-39, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27346689

RESUMEN

White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of âˆ¼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.


Asunto(s)
Exoma/genética , Sitios Genéticos/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Enfermedades del Sistema Inmune/genética , Leucocitos/citología , Recuento de Células Sanguíneas , Humanos , Control de Calidad
4.
Environ Geochem Health ; 40(4): 1175-1185, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29058203

RESUMEN

Exposure to lead (Pb) is implicated in a plethora of health threats in both adults and children. Increased exposure levels are associated with oxidative stress in the blood of workers exposed at occupational levels. However, it is not known whether lower Pb exposure levels are related to a shift toward a more oxidized state. To assess the association between blood lead level (BLL) and glutathione (GSH) redox biomarkers in a population of healthy adults, BLL and four GSH markers (GSH, GSSG, GSH/GSSG ratio and redox potential E h ) were measured in the blood of a cross-sectional cohort of 282 avid seafood-eating healthy adults living on Long Island (NY). Additionally, blood levels of two other metals known to affect GSH redox status, selenium (Se) and mercury (Hg), and omega-3 index were tested for effect modification. Regression models were further adjusted for demographic and smoking status. Increasing exposure to Pb, measured in blood, was not associated with GSSG, but was associated with lower levels of GSH/GSSG ratio and more positive GSH redox potential E h , driven by its association with GSH. No effect modification was observed in analyses stratified by Hg, Se, omega-3 index, sex, age, or smoking. Blood Pb is associated with lower levels of GSH and the GSH/GSSG ratio in this cross-sectional study of healthy adults.


Asunto(s)
Biomarcadores/sangre , Glutatión/sangre , Plomo/sangre , Alimentos Marinos/análisis , Adulto , Estudios de Cohortes , Estudios Transversales , Exposición Dietética , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/sangre , Humanos , Mercurio/administración & dosificación , Mercurio/sangre , Persona de Mediana Edad , New York , Oxidación-Reducción , Estrés Oxidativo , Selenio/administración & dosificación , Selenio/sangre
5.
Eur J Nutr ; 55(2): 699-711, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25832490

RESUMEN

BACKGROUND: Neurodevelopmental effects of omega-3 fatty acids and mercury from fish consumption have been characterized in children. In contrast, neurobehavioral outcomes associated with fish are not well studied in adults. OBJECTIVE: This study of avid seafood consumers on Long Island (NY, USA) sought to define associations between mercury, seafood consumption, omega-3 fatty acids and neurobehavioral outcomes. METHODS: A computer-based test system was used to assess neurobehavioral function. Blood total Hg (Hg) and omega-3 index were measured in 199 adult avid seafood eaters, who also completed the neurobehavioral assessment and an extensive food and fish frequency and demographic questionnaire. RESULTS: For most of the outcomes considered, neither Hg nor omega-3 index was associated with neurobehavioral outcomes after adjustment for key confounding variables. Fish consumption, however, was associated with decreased odds of both self-reported fatigue (OR 0.85; 95 % CI 0.72, 1.01) and a constellation of neurologic symptoms (OR 0.79; 95 % CI 0.66, 0.96). CONCLUSIONS: Results from our study provide little evidence that omega-3 fatty acids or Hg is associated with cognitive function in adult avid seafood consumers. Larger studies are needed to confirm our finding of associations between fish consumption and decreased self-reported fatigue and neurologic impairment.


Asunto(s)
Ácidos Grasos Omega-3/sangre , Mercurio/sangre , Enfermedades del Sistema Nervioso/sangre , Adulto , Animales , Cognición , Depresión/sangre , Depresión/etiología , Femenino , Peces , Contaminación de Alimentos/análisis , Humanos , Modelos Lineales , Modelos Logísticos , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/etiología , New York , Alimentos Marinos/análisis , Selenio/sangre , Factores Socioeconómicos , Encuestas y Cuestionarios
6.
Environ Res ; 146: 100-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26745733

RESUMEN

Mechanisms of mercury (Hg) toxicity at low doses from seafood consumption, the most common exposure route, are not well understood. We tested the hypothesis that seafood Hg exposure is related to a shift in redox status, indicated by a decrease in the ratio of reduced to oxidized glutathione (GSH:GSSG) in blood, or increase in redox potential (Eh). We also examined whether key seafood nutrients (selenium (Se), omega-3 fatty acids) confound or modify this shift. We measured blood concentrations of total Hg, Se, GSH, GSSG, and the Omega-3 Index (% omega-3s of total fatty acids in red blood cell membranes) in seafood consumers in Long Island, NY. We examined relationships between Hg, GSH:GSSG ratio and Eh. Elevated blood Hg (>5.8µgL(-1)) was associated with lower GSH:GSSG (ß=-116.73, p=0.01), with no evidence of confounding by Se or Omega-3 Index. However, in models stratified by Omega-3 Index levels, Hg-GSH:GSSG associations were weakened among those with high Omega-3 Index levels (>6% of fatty acids, ß=-63.46, p=0.28), and heightened among those with low Omega-3 Index (ß=-182.53, p<0.01). We observed comparable patterns for Eh in relation to Hg. These results support the hypothesis that Hg exposure from seafood is linked to a shift in redox status toward oxidative stress, modified by omega-3 fatty acids in this population. Further work should examine the role of different seafood nutrients and Hg-induced shifts in redox status in the diverse health effects associated with elevated Hg exposure.


Asunto(s)
Contaminación de Alimentos/análisis , Mercurio/efectos adversos , Estrés Oxidativo , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/efectos adversos , Adulto , Anciano , Estudios Transversales , Ácidos Grasos Omega-3/metabolismo , Femenino , Glutatión/metabolismo , Humanos , Masculino , Persona de Mediana Edad , New York , Oxidación-Reducción , Adulto Joven
7.
Antimicrob Agents Chemother ; 53(6): 2253-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19307375

RESUMEN

Escherichia coli is refractory to elevated doses of antibiotics when it is growing in a biofilm, and this is potentially due to high numbers of multidrug-tolerant persister cells in the surface-adherent population. Previously, the chromosomal toxin-antitoxin loci hipBA and relBE have been linked to the frequency at which persister cells occur in E. coli populations. In the present study, we focused on the dinJ-yafQ-encoded toxin-antitoxin system and hypothesized that deletion of the toxin gene yafQ might influence cell survival in antibiotic-exposed biofilms. By using confocal laser scanning microscopy and viable cell counting, it was determined that a Delta yafQ mutant produced biofilms with a structure and a cell density equivalent to those of the parental strain. In-depth susceptibility testing identified that relative to wild-type E. coli, the Delta yafQ strain had up to a approximately 2,400-fold decrease in cell survival after the biofilms were exposed to bactericidal concentrations of cefazolin or tobramycin. Corresponding to these data, controlled overexpression of yafQ from a high-copy-number plasmid resulted in up to a approximately 10,000-fold increase in the number of biofilm cells surviving exposure to these bactericidal drugs. In contrast, neither the inactivation nor the overexpression of yafQ affected the tolerance of biofilms to doxycycline or rifampin (rifampicin). Furthermore, deletion of yafQ did not affect the tolerance of stationary-phase planktonic cells to any of the antibacterials tested. These results suggest that yafQ mediates the tolerance of E. coli biofilms to multiple but specific antibiotics; moreover, our data imply that this cellular pathway for persistence is likely different from that of multidrug-tolerant cells in stationary-phase planktonic cell cultures.


Asunto(s)
Toxinas Bacterianas/genética , Biopelículas/efectos de los fármacos , Proteínas de Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Plancton/microbiología
8.
Environ Microbiol ; 11(10): 2491-509, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19555372

RESUMEN

Microbiological metal toxicity involves redox reactions between metal species and cellular molecules, and therefore, we hypothesized that antioxidant systems might be chromosomal determinants affecting the susceptibility of bacteria to metal toxicity. Here, survival was quantified in metal ion-exposed planktonic cultures of several Escherichia coli strains, each bearing a mutation in a gene important for redox homeostasis. This characterized approximately 250 gene-metal combinations and identified that sodA, sodB, gor, trxA, gshA, grxA and marR have distinct roles in safeguarding or sensitizing cells to different toxic metal ions (Cr(2)O(7)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), AsO(2)(-), SeO(3)(2-) or TeO(3)(2-)). To shed light on these observations, fluorescent sensors for reactive oxygen species (ROS) and reduced thiol (RSH) quantification were used to ascertain that different metal ions exert oxidative toxicity through disparate modes-of-action. These oxidative mechanisms of metal toxicity were categorized as involving ROS and thiol-disulfide chemistry together (AsO(2)(-), SeO(3)(2-)), ROS predominantly (Cu(2+), Cr(2)O(7)(2-)) or thiol-disulfide chemistry predominantly (Ag(+), Co(2+), Zn(2+), TeO(3)(2-)). Corresponding to this, promoter-luxCDABE fusions showed that toxic doses of different metal ions up- or downregulate the transcription of gene sets marking distinct pathways of cellular oxidative stress. Altogether, our findings suggest that different metal ions are lethal to cells through discrete pathways of oxidative biochemistry, and moreover, indicate that chromosomally encoded antioxidant systems may have metal ion-specific physiological roles as determinants of bacterial metal tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Cromosomas Bacterianos/genética , Escherichia coli/metabolismo , Genes Bacterianos , Metales/metabolismo , Aniones/química , Antioxidantes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cationes/química , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Metales/química , Oxidación-Reducción , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
9.
Int J Hyg Environ Health ; 222(2): 230-234, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30401599

RESUMEN

OBJECTIVES: There is growing evidence that urine cadmium is a temporally stable biomarker indicative of long-term cadmium exposure; however questions remain with regard to generalizability to older persons, the impact of changes in smoking behavior, and the degree of temporal stability when repeat sample collection spans years instead of weeks or months. METHODS: Using archived samples from cohorts of older men (Osteoporotic Fractures in Men (MrOS-US)) and women (Study of Osteoporotic Fractures (SOF)) (mean age = 80 at study visit 2), we analyzed two morning urine samples each from 39 men and 18 women with a diverse self-reported smoking history. For MrOS, samples were collected approximately 6 years apart, and 4 years apart for SOF. Intra-class correlations were computed to assess temporal stability, and adjusted for age and body mass index. RESULTS: The median creatinine-adjusted urinary cadmium levels (0.39 µg/g for men, 0.89 µg/g for women) were similar to levels expected for these age/sex groups in the US according to the National Health and Nutrition Examination Survey. The overall intra-class correlation was high (ICC = 0.85; 95% CI: 0.76-0.91) and similar between cohorts (MrOS: ICC = 0.74; 95% CI: 0.58-0.86; SOF: ICC = 0.81; 95% CI: 0.59-0.93), but slightly lower among those who stopped smoking between visits of sample collection (ICC = 0.64; 95% CI: 0.31-0.87) or among former smokers who quit prior to the first sample collection (ICC = 0.68; 95% CI: 0.25-0.93). CONCLUSIONS: We report good-to-excellent reproducibility of urine cadmium using morning urine samples collected 4-6 years apart from older men and women, but slightly lower correlations among those with a history of smoking. Single measures of urine cadmium are a reliable biomarker in older men and women.


Asunto(s)
Cadmio/orina , Contaminantes Ambientales/orina , Fumar/orina , Anciano , Anciano de 80 o más Años , Monitoreo Biológico , Biomarcadores/orina , Femenino , Humanos , Masculino , Estudios Prospectivos , Reproducibilidad de los Resultados , Manejo de Especímenes , Factores de Tiempo
10.
Toxics ; 6(3)2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986418

RESUMEN

There is growing evidence of immunotoxicity related to exposure to toxic trace metals, and an examination of gene expression patterns in peripheral blood samples may provide insights into the potential development of these outcomes. This pilot study aimed to correlate the blood levels of three heavy metals (mercury, cadmium, and lead) with differences in gene expression in 24 participants from the Long Island Study of Seafood Consumption. We measured the peripheral blood mRNA expression of 98 genes that are implicated in stress, toxicity, inflammation, and autoimmunity. We fit multiple linear regression models with multiple testing correction to correlate exposure biomarkers with mRNA abundance. The mean blood Hg in this cohort was 16.1 µg/L, which was nearly three times the Environmental Protection Agency (EPA) reference dose (5.8 µg/L). The levels of the other metals were consistent with those in the general population: the mean Pb was 26.8 µg/L, and the mean Cd was 0.43 µg/L. The expression of three genes was associated with mercury, four were associated with cadmium, and five were associated with lead, although none were significant after multiple testing correction. Little evidence was found to associate metal exposure with mRNA abundance for the tested genes that were associated with stress, toxicity, inflammation, or autoimmunity. Future work should provide a more complete picture of physiological reactions to heavy metal exposure.

11.
Psychiatry Res ; 256: 444-447, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28709058

RESUMEN

Our aim was to explore the association between blood cadmium (BCd) and depressive symptoms, adjusting for pack years and blood cotinine, and also stratifying by smoking status. Using data from the US National Health and Nutrition Examination Survey (NHANES) 2005-2012, we categorized depressive symptoms using the PHQ-9 (Patient Health Questionnaire-9) survey and modeled depressive symptoms in relation to BCd adjusted for blood cotinine, pack years of smoking, and other covariates. We also stratified by self-reported smoking status (current, former, never). There were 11,209 subjects from 2005 to 2012, age ≥ 18 with PHQ-9, smoking, and blood cadmium data available. 876 (7.8%) met criteria for depressive symptoms. Depressive symptoms were associated with BCd levels in a crude model and with adjustment for pack years and cotinine. The association disappeared when analyzed among current, former, or never smokers. Consistent with the literature, we found an association between BCd and depressive symptoms; however, that association disappears in analyses stratified by smoking status. This suggests residual confounding may be present. It is important to stratify by smoking status when investigating health outcomes associated with BCd.


Asunto(s)
Cadmio/sangre , Fumar Cigarrillos/sangre , Depresión/sangre , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Autoinforme , Encuestas y Cuestionarios
12.
J Expo Sci Environ Epidemiol ; 27(3): 306-312, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27168395

RESUMEN

Cadmium is a carcinogenic heavy metal. Urinary levels of cadmium are considered to be an indicator of long-term body burden, as cadmium accumulates in the kidneys and has a half-life of at least 10 years. However, the temporal stability of the biomarker in urine samples from a non-occupationally exposed population has not been rigorously established. We used repeated measurements of urinary cadmium (U-Cd) in spot urine samples and first morning voids from two separate cohorts, to assess the temporal stability of the samples. Urine samples from two cohorts including individuals of both sexes were measured for cadmium and creatinine. The first cohort (Home Observation of Perinatal Exposure (HOPE)) consisted of 21 never-smokers, who provided four first morning urine samples 2-5 days apart, and one additional sample roughly 1 month later. The second cohort (World Trade Center-Health Program (WTC-HP)) consisted of 78 individuals, including 52 never-smokers, 22 former smokers and 4 current smokers, who provided 2 spot urine samples 6 months apart, on average. Intra-class correlation was computed for groups of replicates from each individual to assess temporal variability. The median creatinine-adjusted U-Cd level (0.19 and 0.21 µg/g in the HOPE and WTC-HP, respectively) was similar to levels recorded in the United States by the National Health and Nutrition Examination Survey. The intra-class correlation (ICC) was high (0.76 and 0.78 for HOPE and WTC-HP, respectively) and similar between cohorts, irrespective of whether samples were collected days or months apart. Both single spot or first morning urine cadmium samples show good to excellent reproducibility in low-exposure populations.


Asunto(s)
Biomarcadores/orina , Cadmio/orina , Creatinina/orina , Exposición a Riesgos Ambientales/análisis , Fumar/orina , Índice de Masa Corporal , Estudios de Cohortes , Monitoreo del Ambiente , Femenino , Humanos , Masculino , Análisis de Regresión , Reproducibilidad de los Resultados , Ataques Terroristas del 11 de Septiembre , Estados Unidos , Utah
13.
Curr Environ Health Rep ; 3(4): 450-458, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27696280

RESUMEN

Cadmium is a naturally-occurring element, and humans are exposed from cigarettes, food, and industrial sources. Following exposure, cadmium accumulates in the kidney and is slowly released into the urine, usually proportionally to the levels found in the kidneys. Cadmium levels in a single spot urine sample have been considered indicative of long-term exposure to cadmium; however, such a potentially exceptional biomarker requires careful scrutiny. In this review, we report good to excellent temporal stability of urinary cadmium (intraclass correlation coefficient 0.66-0.81) regardless of spot urine or first morning void sampling. Factors such as changes in smoking habits and diseases characterized by increased excretion of proteins may produce short-term changes in urinary cadmium levels. We recommend that epidemiologists use this powerful biomarker in prospective studies stratified by smoking status, along with thoughtful consideration of additional factors that can influence renal physiology and cadmium excretion.


Asunto(s)
Biomarcadores/orina , Cadmio/orina , Exposición a Riesgos Ambientales/análisis , Creatinina/orina , Humanos , Riñón , Fumar/orina
14.
BMC Res Notes ; 8: 681, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26572681

RESUMEN

BACKGROUND: The sphingolipid glucosylceramide (GlcCer) and factors involved in the fungal GlcCer pathways were shown earlier to be an integral part of fungal virulence, especially in fungal replication at 37 °C, in neutral/alkaline pH and 5 % CO2 environments (e.g. alveolar spaces). Two mutants, ∆gcs 1 lacking glucosylceramide synthase 1 gene (GCS1) which catalyzes the formation of sphingolipid GlcCer from the C9-methyl ceramide and ∆smt1 lacking sphingolipid C9 methyltransferase gene (SMT1), which adds a methyl group to position nine of the sphingosine backbone of ceramide, of this pathway were attenuated in virulence and have a growth defect at the above-mentioned conditions. These mutants with either no or structurally modified GlcCer located on the cell-membrane have reduced membrane rigidity, which may have altered not only the physical location of membrane proteins but also their expression, as the pathogen's mode of adaptation to changing need. Importantly, pathogens are known to adapt themselves to the changing host environments by altering their patterns of gene expression. RESULTS: By transcriptional analysis of gene expression, we identified six genes whose expression was changed from their wild-type counterpart grown in the same conditions, i.e. they became either down regulated or up regulated in these two mutants. The microarray data was validated by real-time PCR, which confirmed their fold change in gene expression. All the six genes we identified, viz siderochrome-iron transporter (CNAG_02083), monosaccharide transporter (CNAG_05340), glucose transporter (CNAG_03772), membrane protein (CNAG_03912), membrane transport protein (CNAG_00539), and sugar transporter (CNAG_06963), are membrane-localized and have significantly altered gene expression levels. Therefore, we hypothesize that these genes function either independently or in tandem with a structurally modified cell wall/plasma membrane resulting from the modifications of the GlcCer pathway and thus possibly disrupt transmembrane signaling complex, which in turn contributes to cryptococcal osmotic, pH, ion homeostasis and its pathobiology. CONCLUSION: Six genes identified from gene expression microarrays by gene set enrichment analysis and validated by RT-PCR, are membrane located and associated with the growth defect at neutral-alkaline pH due to the absence and or presence of a structurally modified GlcCer. They may be involved in the transmembrane signaling network in Cryptococcus neoformans, and therefore the pathobiology of the fungus in these conditions.


Asunto(s)
Cryptococcus neoformans/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , Glucosilceramidas/metabolismo , Transducción de Señal/fisiología , Cryptococcus neoformans/genética , Regulación de la Expresión Génica/genética , Análisis por Micromatrices , Transducción de Señal/genética
15.
PLoS One ; 10(9): e0138784, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26390122

RESUMEN

BACKGROUND: Cadmium is a known carcinogen that can disrupt endocrine signalling. Cigarette smoking and food are the most common routes of non-occupational exposure to cadmium. Cadmium accumulates in the kidney and can be measured in urine, making urine cadmium (U-Cd) a biomarker of long-term exposure. However dietary-cadmium (D-Cd) intake estimates are often used as surrogate indicator of cadmium exposure in non-smoking subjects. It is therefore important to investigate the concordance between D-Cd estimates obtained with Food Frequency Questionnaires and U-Cd. METHODS: U-Cd levels were compared with estimated dietary-cadmium (D-Cd) intake in 1764 post-menopausal women from the Danish Diet, Cancer and Health cohort. For each participant, a food frequency questionnaire, and measures of cadmium content in standard recipes were used to judge the daily intake of cadmium, normalized by daily caloric intake. Cadmium was measured by ICP-MS in spot urine sampled at baseline and normalized by urinary creatinine. Information on diet, socio-demographics and smoking were self-reported at baseline. RESULTS: Linear regressions between U-Cd and D-Cd alone revealed minimal but significant positive correlation in never smokers (R2 = 0.0076, ß = 1.5% increase per 1 ng Cd kcal(-1), p = 0.0085, n = 782), and negative correlation in current smokers (R2 = 0.0184, ß = 7.1% decrease per 1 ng Cd kcal(-1) change, p = 0.0006, n = 584). In the full study population, most of the variability in U-Cd was explained by smoking status (R2 = 0.2450, n = 1764). A forward selection model revealed that the strongest predictors of U-Cd were age in never smokers (Δ R2 = 0.04), smoking duration in former smokers (Δ R2 = 0.06) and pack-years in current smokers (Δ R2 = 0.07). Food items that contributed to U-Cd were leafy vegetables and soy-based products, but explained very little of the variance in U-Cd. CONCLUSIONS: Dietary-Cd intake estimated from food frequency questionnaires correlates only minimally with U-Cd biomarker, and its use as a Cd exposure indicator may be of limited utility in epidemiologic studies.


Asunto(s)
Cadmio/orina , Registros de Dieta , Dieta , Posmenopausia/orina , Anciano , Biomarcadores/orina , Estudios de Cohortes , Dinamarca , Encuestas sobre Dietas , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Modelos Lineales , Persona de Mediana Edad , Fumar/orina , Encuestas y Cuestionarios
16.
PLoS One ; 8(1): e52442, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300973

RESUMEN

MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.


Asunto(s)
Regulación de la Expresión Génica , Corazón/fisiología , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Animales , Línea Celular , Mapeo Cromosómico/métodos , Perros , Femenino , Válvulas Cardíacas/metabolismo , Humanos , Hibridación in Situ , Macaca fascicularis , Masculino , Miocardio/patología , Procesamiento Postranscripcional del ARN , Ratas , Ratas Wistar , Especificidad de la Especie
17.
PLoS One ; 7(7): e40395, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22859947

RESUMEN

Anti-cancer therapy based on anthracyclines (DNA intercalating Topoisomerase II inhibitors) is limited by adverse effects of these compounds on the cardiovascular system, ultimately causing heart failure. Despite extensive investigations into the effects of doxorubicin on the cardiovascular system, the molecular mechanisms of toxicity remain largely unknown. MicroRNAs are endogenously transcribed non-coding 22 nucleotide long RNAs that regulate gene expression by decreasing mRNA stability and translation and play key roles in cardiac physiology and pathologies. Increasing doses of doxorubicin, but not etoposide (a Topoisomerase II inhibitor devoid of cardiovascular toxicity), specifically induced the up-regulation of miR-208b, miR-216b, miR-215, miR-34c and miR-367 in rat hearts. Furthermore, the lowest dosing regime (1 mg/kg/week for 2 weeks) led to a detectable increase of miR-216b in the absence of histopathological findings or alteration of classical cardiac stress biomarkers. In silico microRNA target predictions suggested that a number of doxorubicin-responsive microRNAs may regulate mRNAs involved in cardiac tissue remodeling. In particular miR-34c was able to mediate the DOX-induced changes of Sipa1 mRNA (a mitogen-induced Rap/Ran GTPase activating protein) at the post-transcriptional level and in a seed sequence dependent manner. Our results show that integrated heart tissue microRNA and mRNA profiling can provide valuable early genomic biomarkers of drug-induced cardiac injury as well as novel mechanistic insight into the underlying molecular pathways.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , MicroARNs/genética , Miocardio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Biomarcadores/metabolismo , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Doxorrubicina/farmacología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Humanos , Masculino , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , Miocardio/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Activación Transcripcional/efectos de los fármacos , Transcriptoma , Regulación hacia Arriba/efectos de los fármacos , Vacuolas/efectos de los fármacos
19.
FEMS Microbiol Ecol ; 74(2): 291-301, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20846140

RESUMEN

Pseudomonas pseudoalcaligenes KF707 is a polychlorinated biphenyls (PCBs) degrader, also tolerant to several toxic metals and metalloids. The work presented here examines for the first time the chemotactic response of P. pseudoalcaligenes KF707 to biphenyl and intermediates of the PCB biodegradation pathway in the presence and absence of metals. Chemotaxis analyses showed that biphenyl, benzoic acid and chlorobenzoic acids acted as chemoattractants for KF707 cells and that metal cations such as Ni(2+) and Cu(2+) strongly affected the chemotactic response. Toxicity profiles of various metals on KF707 cells grown on succinate or biphenyl as planktonic and biofilm were determined both in the presence and in the absence of PCBs. Notably, KF707 cells from both biofilms and planktonic cultures were tolerant to high amounts (up to 0.5 g L(-1)) of Aroclor 1242, a commercial mixture of PCBs. Together, the data show that KF707 cells are chemotactic and can form a biofilm in the presence of Aroclor 1242 and specific metals. These findings provide new perspectives on the effectiveness of using PCB-degrading bacterial strains in bioremediation strategies of metal-co-contaminated sites.


Asunto(s)
Quimiotaxis , Clorobenzoatos/metabolismo , Metales/metabolismo , Bifenilos Policlorados/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Arocloros/metabolismo , Biodegradación Ambiental , Biopelículas , Pseudomonas pseudoalcaligenes/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA