Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Mol Genet ; 25(24): 5287-5299, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27742776

RESUMEN

BRCA1-deficient cells show defects in DNA repair and rely on other members of the DNA repair machinery, which makes them sensitive to PARP inhibitors (PARPi). Although carrying a germline pathogenic variant in BRCA1/2 is the best determinant of response to PARPi, a significant percentage of the patients do not show sensitivity and/or display increased toxicity to the agent. Considering previously suggested mutation-specific BRCA1 haploinsufficiency, we aimed to investigate whether there are any differences in cellular response to PARPi olaparib depending on the BRCA1 mutation type. Lymphoblastoid cell lines derived from carriers of missense pathogenic variants in the BRCA1 BRCT domain (c.5117G > A, p.Gly1706Glu and c.5123C > A, p.Ala1708Glu) showed higher sensitivity to olaparib than cells with truncating variants or wild types (WT). Response to olaparib depended on a basal PARP enzymatic activity, but did not correlate with PARP1 expression. Interestingly, cellular sensitivity to the agent was associated with the level of BRCA1 recruitment into γH2AX foci, being the lowest in cells with missense variants. Since these variants lead to partially stable protein mutants, we propose a model in which the mutant protein acts in a dominant negative manner on the WT BRCA1, impairing the recruitment of BRCA1 into DNA damage sites and, consequently, increasing cellular sensitivity to PARPi. Taken together, our results indicate that carriers of different BRCA1 mutations could benefit from olaparib in a distinct way and show different toxicities to the agent, which could be especially relevant for a potential future use of PARPi as prophylactic agents in BRCA1 mutation carriers.


Asunto(s)
Proteína BRCA1/genética , Neoplasias Ováricas/tratamiento farmacológico , Ftalazinas/administración & dosificación , Piperazinas/administración & dosificación , Poli(ADP-Ribosa) Polimerasas/genética , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Resistencia a Antineoplásicos/genética , Femenino , Mutación de Línea Germinal/genética , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación
2.
PLoS Genet ; 10(4): e1004256, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24698998

RESUMEN

Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , ADN Glicosilasas/genética , Reparación del ADN/genética , Neoplasias Ováricas/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Persona de Mediana Edad , Riesgo
3.
Breast Cancer Res Treat ; 152(2): 271-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26071757

RESUMEN

BRCA1 germline mutations increase the lifetime risk of developing breast and ovarian cancers. However, taking into account the differences in disease manifestation among mutation carriers, it is probable that different BRCA1 mutations have distinct haploinsufficiency effects and lead to the formation of different phenotypes. Using lymphoblastoid cell lines derived from heterozygous BRCA1 mutation carriers and non-carriers, we investigated the haploinsufficiency effects of various mutation types using qPCR, immunofluorescence, and microarray technology. Lymphoblastoid cell lines carrying a truncating mutation showed significantly lower BRCA1 mRNA and protein levels and higher levels of gamma-H2AX than control cells or those harboring a missense mutation, indicating greater spontaneous DNA damage. Cells carrying either BRCA1 mutation type showed impaired RAD51 foci formation, suggesting defective repair in mutated cells. Moreover, compared to controls, cell lines carrying missense mutations displayed a more distinct expression profile than cells with truncating mutations, which is consistent with different mutations giving rise to distinct phenotypes. Alterations in the immune response pathway in cells harboring missense mutations point to possible mechanisms of breast cancer initiation in carriers of these mutations. Our findings offer insight into how various heterozygous mutations in BRCA1 could lead to impairment of BRCA1 function and provide strong evidence of haploinsufficiency in BRCA1 mutation carriers.


Asunto(s)
Proteína BRCA1/genética , Neoplasias de la Mama/genética , Reparación del ADN , Heterocigoto , Mutación , Alelos , Proteína BRCA1/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Análisis por Conglomerados , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Haploinsuficiencia , Histonas/metabolismo , Humanos , Recombinasa Rad51/metabolismo , Transcriptoma
4.
Clin Cancer Res ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630555

RESUMEN

PURPOSE: Osimertinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) indicated for the treatment of EGFR mutated (EGFRm)-driven lung adenocarcinomas. Osimertinib significantly improves progression-free survival in first-line treated patients with EGFRm advanced NSCLC. Despite the durable disease control, the majority of patients receiving osimertinib eventually develop disease progression. EXPERIMENTAL DESIGN: ctDNA profiling analysis on-progression plasma samples from patients treated with osimertinib in both first (Phase 3, FLAURA trial) and second-line trials (Phase 3, AURA3 trial) revealed a high prevalence of PIK3CA/AKT/PTEN alterations. In vitro and in vivo evidence using CRISPR engineered NSCLC cell lines and PXD models support a functional role for PIK3CA and PTEN mutations in the development of osimertinib resistance. RESULTS: These alterations are functionally relevant as EGFRm NSCLC cells with engineered PIK3CA/AKT/PTEN alterations develop resistance to osimertinib and can be re-sensitized by treatment with the combination of osimertinib and the AKT inhibitor capivasertib. Moreover, xenograft and PDX in vivo models with PIK3CA/AKT/PTEN alterations display limited sensitivity to osimertinib relative to models without alteration, and in these double mutant models capivasertib and osimertinib combination elicits an improved anti-tumor effect versus osimertinib alone. CONCLUSIONS: Together, this approach offers a potential treatment strategy for patients with EGFRm-driven NSCLC that have a sub-optimal response, or develop resistance, to osimertinib through PIK3CA/AKT/PTEN alterations.

5.
Sci Rep ; 12(1): 2699, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177674

RESUMEN

The development of covalent inhibitors against KRAS G12C represents a major milestone in treatment of RAS-driven cancers, especially in non-small cell lung cancer (NSCLC), where KRAS G12C is one of the most common oncogenic driver. Here we investigated if additional KRAS mutations co-occur with KRAS G12C (c.34G>T) in NSCLC tumours and if such mutation co-occurrence affects cellular response to G12C-specific inhibitors. Analysis of a large cohort of NSCLC patients whose tumours harboured KRAS mutations revealed co-occurring KRAS mutations in up to 8% of tumours with the KRAS c.34G>T mutation. KRAS c.35G>T was the most frequently co-occurring mutation, and could occur on the same allele (in cis) translating to a single mutant KRAS G12F protein, or on the other allele (in trans), translating to separate G12C and G12V mutant proteins. Introducing KRAS c.35G>T in trans in the KRAS G12C lung cancer model NCI-H358, as well as the co-occurrence in cis in the KRAS G12F lung cancer model NCI-H2291 led to cellular resistance to the G12C-specific inhibitor AZ'8037 due to continuing active MAPK and PI3K cascades in the presence of the inhibitor. Overall, our study provides a comprehensive assessment of co-occurring KRAS mutations in NSCLC and in vitro evidence of the negative impact of co-occurring KRAS mutations on cellular response to G12C inhibitors, highlighting the need for a comprehensive KRAS tumour genotyping for optimal patient selection for treatment with a KRAS G12C inhibitor.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Tasa de Mutación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Estudios Retrospectivos
6.
Nat Commun ; 12(1): 1780, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741979

RESUMEN

Advanced non-small-cell lung cancer (NSCLC) patients with EGFR T790M-positive tumours benefit from osimertinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). Here we show that the size of the EGFR T790M-positive clone impacts response to osimertinib. T790M subclonality, as assessed by a retrospective NGS analysis of 289 baseline plasma ctDNA samples from T790M-positive advanced NSCLC patients from the AURA3 phase III trial, is associated with shorter progression-free survival (PFS), both in the osimertinib and the chemotherapy-treated patients. Both baseline and longitudinal ctDNA profiling indicate that the T790M subclonal tumours are enriched for PIK3CA alterations, which we demonstrate to confer resistance to osimertinib in vitro that can be partially reversed by PI3K pathway inhibitors. Overall, our results elucidate the impact of tumour heterogeneity on response to osimertinib in advanced stage NSCLC patients and could help define appropriate combination therapies in these patients.


Asunto(s)
Acrilamidas/uso terapéutico , Compuestos de Anilina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Mutación Missense , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , ADN Tumoral Circulante/análisis , ADN Tumoral Circulante/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Receptores ErbB/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos
7.
Cancers (Basel) ; 12(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531927

RESUMEN

BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.

8.
Oncotarget ; 8(70): 114626-114636, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383107

RESUMEN

In this report, we have tried to gain molecular insight into a single nucleotide polymorphism (SNP) in the NEIL2 gene previously identified as "cancer risk modifier" for BRCA2 mutation carriers. To that end, we studied the role of this SNP (rs804271) on NEIL2 transcriptional regulation, oxidative DNA damage and genome instability in two independent set of samples: The first one was a series of eighty-six BRCA1 and BRCA2 mutation carriers and eighty non-carrier controls in which we evaluated the effect of the SNP on NEIL2 gene expression and oxidative DNA damage accumulation. The second was a set of twenty lymphoblastoid cell lines (LCLs), thirteen BRCA1 mutation carriers and seven non-carriers control, that were used to analyze the correlation between NEIL2 mRNA and/or protein levels, the oxidative and the double stranded break (DSB) DNA damage levels. Our results suggest that an excessive production of NEIL2 enzyme, associated with the SNP, may have a deleterious effect modifying cancer risk susceptibility in BRCA2 mutation carriers. We hypothesize that due to the SNP impact on NEIL2 transcriptional upregulation, a cascade of events may converge in the accumulation of oxidative DNA damage and its posterior conversion into DSBs for this specific group of patients.

9.
Oncotarget ; 7(18): 25815-25, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27015555

RESUMEN

We have recently shown that rs2304277 variant in the OGG1 glycosidase gene of the Base Excision Repair pathway can increase ovarian cancer risk in BRCA1 mutation carriers. In the present study, we aimed to explore the role of this genetic variant on different genome instability hallmarks to explain its association with cancer risk.We have evaluated the effect of this polymorphism on OGG1 transcriptional regulation and its contribution to telomere shortening and DNA damage accumulation. For that, we have used a series of 89 BRCA1 and BRCA2 mutation carriers, 74 BRCAX cases, 60 non-carrier controls and 23 lymphoblastoid cell lines (LCL) derived from BRCA1 mutation carriers and non-carriers.We have identified that this SNP is associated to a significant OGG1 transcriptional down regulation independently of the BRCA mutational status and that the variant may exert a synergistic effect together with BRCA1 or BRCA2 mutations on DNA damage and telomere shortening.These results suggest that this variant, could be associated to a higher cancer risk in BRCA1 mutation carriers, due to an OGG1 transcriptional down regulation and its effect on genome instability.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , ADN Glicosilasas/genética , Predisposición Genética a la Enfermedad/genética , Mutación , Neoplasias Ováricas/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
10.
Artículo en Inglés | MEDLINE | ID: mdl-28781887

RESUMEN

Variants of Uncertain Significance (VUS) are genetic variants whose association with a disease phenotype has not been established. They are a common finding in sequencing-based genetic tests and pose a significant clinical challenge. The objective of this study was to assess the use of functional data to classify variants according to pathogenicity. We conduct functional analysis of a large set of BRCA1 VUS combining a validated functional assay with VarCall, a Bayesian hierarchical model to estimate the likelihood of pathogenicity given the functional data. The results from the functional assays were incorporated into a joint analysis of 214 BRCA1 VUS to predict their likelihood of pathogenicity (breast cancer). We show that applying the VarCall model (1.0 sensitivity; lower bound of 95% confidence interval (CI) = 0.75 and 1.0 specificity; lower bound of 95% CI = 0.83) to the current set of BRCA1 variants, use of the functional data would significantly reduce the number of VUS associated with the C-terminal region of the BRCA1 protein by ~ 87%. We extend this work developing yeast-based functional assays for two other genes coding for BRCT domain containing proteins, MCPH1 and MDC1. Analysis of missense variants in MCPH1 and MDC1 shows that structural inference based on the BRCA1 data set can aid in prioritising variants for further analysis. Taken together our results indicate that systematic functional assays can provide a robust tool to aid in clinical annotation of VUS. We propose that well-validated functional assays could be used for clinical annotation even in the absence of additional sources of evidence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA