Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Mol Cell Cardiol ; 186: 16-30, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935281

RESUMEN

Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Válvula Mitral , Humanos , Ratones , Animales , Válvula Mitral/metabolismo , Enfermedades de las Válvulas Cardíacas/patología , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Ratones Noqueados , Factores de Transcripción/metabolismo
2.
J Neurosci ; 42(42): 8002-8018, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36180228

RESUMEN

Dysfunction of the peripheral auditory nerve (AN) contributes to dynamic changes throughout the central auditory system, resulting in abnormal auditory processing, including hypersensitivity. Altered sound sensitivity is frequently observed in autism spectrum disorder (ASD), suggesting that AN deficits and changes in auditory information processing may contribute to ASD-associated symptoms, including social communication deficits and hyperacusis. The MEF2C transcription factor is associated with risk for several neurodevelopmental disorders, and mutations or deletions of MEF2C produce a haploinsufficiency syndrome characterized by ASD, language, and cognitive deficits. A mouse model of this syndromic ASD (Mef2c-Het) recapitulates many of the MEF2C haploinsufficiency syndrome-linked behaviors, including communication deficits. We show here that Mef2c-Het mice of both sexes exhibit functional impairment of the peripheral AN and a modest reduction in hearing sensitivity. We find that MEF2C is expressed during development in multiple AN and cochlear cell types; and in Mef2c-Het mice, we observe multiple cellular and molecular alterations associated with the AN, including abnormal myelination, neuronal degeneration, neuronal mitochondria dysfunction, and increased macrophage activation and cochlear inflammation. These results reveal the importance of MEF2C function in inner ear development and function and the engagement of immune cells and other non-neuronal cells, which suggests that microglia/macrophages and other non-neuronal cells might contribute, directly or indirectly, to AN dysfunction and ASD-related phenotypes. Finally, our study establishes a comprehensive approach for characterizing AN function at the physiological, cellular, and molecular levels in mice, which can be applied to animal models with a wide range of human auditory processing impairments.SIGNIFICANCE STATEMENT This is the first report of peripheral auditory nerve (AN) impairment in a mouse model of human MEF2C haploinsufficiency syndrome that has well-characterized ASD-related behaviors, including communication deficits, hyperactivity, repetitive behavior, and social deficits. We identify multiple underlying cellular, subcellular, and molecular abnormalities that may contribute to peripheral AN impairment. Our findings also highlight the important roles of immune cells (e.g., cochlear macrophages) and other non-neuronal elements (e.g., glial cells and cells in the stria vascularis) in auditory impairment in ASD. The methodological significance of the study is the establishment of a comprehensive approach for evaluating peripheral AN function and impact of peripheral AN deficits with minimal hearing loss.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Masculino , Femenino , Ratones , Animales , Humanos , Trastorno Autístico/complicaciones , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Factores de Transcripción MEF2/genética , Nervio Coclear , Modelos Animales de Enfermedad
3.
Mol Carcinog ; 53 Suppl 1: E130-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23996472

RESUMEN

Recently, a reciprocal relationship between calcitriol and epithelial-to-mesenchymal transition has been described. Therefore, we hypothesized that calcitriol (1α,25-dihydroxyvitamin D3) would enhance radiation sensitivity in colorectal cancer regulated by epithelial mesenchymal transition. Vitamin-D receptor, E-cadherin and vimentin protein as well as E-cadherin, Snail and Slug mRNA levels were assessed in a panel of human colorectal cancer cell lines at baseline and in response calcitriol. We defined cell lines as calcitriol sensitive based on demonstrating an enhanced epithelial phenotype with increased E-cadherin, reduced vimentin and decreased expression of Snail and Slug as well as decreased cellular migration in response to calcitriol. In calcitriol sensitive cells, including DLD-1 and HCT116, 24 h calcitriol pre-treatment enhanced the radiation sensitivity by 2.3- and 2.6-fold, respectively, at 4 Gy (P < 0.05). In contrast, SW620 cells with high baseline mesenchymal features including high Slug and vimentin expression with low E-cadherin expression demonstrated no significant radiation sensitizing response to calcitriol treatment. Similarly, transfection of Slug in the calcitriol sensitive colon cancer cell lines, DLD-1 and HCT 116, completely inhibited the radiation sensitizing effect of calcitriol. Collectively, we demonstrate that calcitriol can enhance the therapeutic effects of radiation in colon cancer cells and Slug expression mitigates this observed effect potentially representing an effective biomarker for calcitriol therapy.


Asunto(s)
Calcitriol/farmacología , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Factores de Transcripción/genética , Western Blotting , Cadherinas/genética , Cadherinas/metabolismo , Agonistas de los Canales de Calcio/farmacología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/efectos de la radiación , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/radioterapia , Transición Epitelial-Mesenquimal/efectos de la radiación , Técnica del Anticuerpo Fluorescente , Rayos gamma , Humanos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Vimentina/genética , Vimentina/metabolismo
4.
bioRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352443

RESUMEN

Genetically engineered mouse models (GEMM) have fundamentally changed how ovarian cancer etiology, early detection, and treatment is understood. However, previous GEMMs of high-grade serous ovarian cancer (HGSOC) have had to utilize genetics rarely or never found in human HGSOC to yield ovarian cancer within the lifespan of a mouse. MYC, an oncogene, is amongst the most amplified genes in HGSOC, but it has not previously been utilized to drive HGSOC GEMMs. We coupled Myc and dominant negative mutant p53-R270H with a fallopian tube epithelium-specific promoter Ovgp1 to generate a new GEMM of HGSOC. Female mice developed lethal cancer at an average of 15.1 months. Histopathological examination of mice revealed HGSOC characteristics including nuclear p53 and nuclear MYC in clusters of cells within the fallopian tube epithelium and ovarian surface epithelium. Unexpectedly, nuclear p53 and MYC clustered cell expression was also identified in the uterine luminal epithelium, possibly from intraepithelial metastasis from the fallopian tube epithelium (FTE). Extracted tumor cells exhibited strong loss of heterozygosity at the p53 locus, leaving the mutant allele. Copy number alterations in these cancer cells were prevalent, disrupting a large fraction of genes. Transcriptome profiles most closely matched human HGSOC and serous endometrial cancer. Taken together, these results demonstrate the Myc and Trp53-R270H transgene was able to recapitulate many phenotypic hallmarks of HGSOC through the utilization of strictly human-mimetic genetic hallmarks of HGSOC. This new mouse model enables further exploration of ovarian cancer pathogenesis, particularly in the 50% of HGSOC which lack homology directed repair mutations. Histological and transcriptomic findings are consistent with the hypothesis that uterine serous cancer may originate from the fallopian tube epithelium.

5.
J Surg Res ; 170(1): 56-63, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21470622

RESUMEN

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a series of molecular changes allowing epithelial cancer cells to acquire properties of mesenchymal cells: increased motility, invasion, and protection from apoptosis. Transcriptional regulators such as Slug mediate EMT, working in part to repress E-cadherin transcription. We report a novel, noninvasive in vivo rectal cancer model to explore the role of Slug in colorectal cancer (CRC) tumor development. METHODS: For the generation of DLD-1 cells overexpressing Slug (Slug DLD-1), a Slug or empty (Empty DLD-1) pCMV-3Tag-1 (kanamycin-resistant) vector was used for transfection. Cells were evaluated for Slug and E-cadherin expression, and cell migration and invasion. For the in vivo study, colon cancer cells (parental DLD-1, Slug DLD-1, empty DLD-1, and HCT-116) were submucosally injected into the posterior rectum of nude mice using endoscopic guidance. After 28 d, tumors were harvested and tissue was analyzed. RESULTS: Slug expression in our panel of colon cancer cell lines was inversely correlated with E-cadherin expression and enhanced migration/invasion. Slug DLD-1 cells demonstrated a 21-fold increased Slug and 19-fold decreased E-cadherin expression compared with empty DLD-1. Similarly, the Slug DLD-1 cells had significantly enhanced cellular migration and invasion. In the orthotopic rectal cancer model, Slug DLD-1 cells formed rectal tumors in 9/10 (90%) of the mice (mean volume = 458 mm(3)) compared with only 1/10 (10%) with empty DLD-1 cells. CONCLUSION: Slug mediates EMT with enhanced in vivo rectal tumor formation. Our noninvasive in vivo model enables researchers to explore the molecular consequences of altered genes in a clinically relevant rectal cancer in an effort to develop novel therapeutic approaches for patients with rectal cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias del Recto/etiología , Factores de Transcripción/fisiología , Animales , Cadherinas/análisis , Línea Celular Tumoral , Movimiento Celular , Humanos , Ratones , Neoplasias del Recto/patología , Factores de Transcripción de la Familia Snail , Factores de Transcripción/análisis
6.
Cell Rep ; 28(7): 1879-1893.e7, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412253

RESUMEN

Sphingosine 1-phosphate (S1P), a bioactive lysophospholipid generated by sphingosine kinase 1 (SphK1), regulates lymphocyte egress into circulation via S1P receptor 1 (S1PR1) signaling, and it controls the differentiation of regulatory T cells (Tregs) and T helper-17 cells. However, the mechanisms by which receptor-independent SphK1-mediated intracellular S1P levels modulate T cell functionality remains unknown. We show here that SphK1-deficient T cells maintain central memory phenotype and exhibit higher mitochondrial respiration and reduced differentiation to Tregs. Mechanistically, we discovered a direct correlation between SphK1-generated S1P and lipid transcription factor PPARγ (peroxisome proliferator-activated receptor gamma) activity, which in turn regulates lipolysis in T cells. Genetic and pharmacologic inhibition of SphK1 improved metabolic fitness and anti-tumor activity of T cells against murine melanoma. Further, inhibition of SphK1 and PD1 together led to improved control of melanoma. Overall, these data highlight the clinical potential of limiting SphK1/S1P signaling for enhancing anti-tumor-adoptive T cell therapy.


Asunto(s)
Reprogramación Celular , Regulación Neoplásica de la Expresión Génica , Lisofosfolípidos/metabolismo , Melanoma Experimental/patología , PPAR gamma/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Esfingosina/análogos & derivados , Linfocitos T/inmunología , Animales , Femenino , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación Oxidativa , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Linfocitos T/metabolismo
7.
JCI Insight ; 3(24)2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30568037

RESUMEN

Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (HCT). DCs play critical roles in GVHD induction. Modulating autophagy represents a promising therapeutic strategy for the treatment of immunological diseases. Complement receptors C3aR/C5aR expressed on DCs regulate immune responses by translating extracellular signals into intracellular activity. In the current study, we found that C3aR/C5aR deficiency enhanced ceramide-dependent lethal mitophagy (CDLM) in DCs. Cotransfer of host-type C3aR-/-/C5aR-/- DCs in the recipients significantly improved GVHD outcome after allogeneic HCT, primarily through enhancing CDLM in DCs. C3aR/C5aR deficiency in the host hematopoietic compartment significantly reduced GVHD severity via impairing Th1 differentiation and donor T cell glycolytic activity while enhancing Treg generation. Prophylactic treatment with C3aR/C5aR antagonists effectively alleviated GVHD while maintaining the graft-versus-leukemia (GVL) effect. Altogether, we demonstrate that inhibiting C3aR/C5aR induces lethal mitophagy in DCs, which represents a potential therapeutic approach to control GVHD while preserving the GVL effect.


Asunto(s)
Células Dendríticas/inmunología , Enfermedad Injerto contra Huésped/inmunología , Mitofagia , Receptor de Anafilatoxina C5a/inmunología , Animales , Apoptosis , Autofagia , Diferenciación Celular , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo , Linfocitos T , Linfocitos T Reguladores/inmunología , Células TH1
8.
EMBO Mol Med ; 9(8): 1030-1051, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28606997

RESUMEN

Human papillomavirus (HPV) infection is linked to improved survival in response to chemo-radiotherapy for patients with oropharynx head and neck squamous cell carcinoma (HNSCC). However, mechanisms involved in increased HNSCC cell death by HPV signaling in response to therapy are largely unknown. Here, using molecular, pharmacologic and genetic tools, we show that HPV early protein 7 (E7) enhances ceramide-mediated lethal mitophagy in response to chemotherapy-induced cellular stress in HPV-positive HNSCC cells by selectively targeting retinoblastoma protein (RB). Inhibition of RB by HPV-E7 relieves E2F5, which then associates with DRP1, providing a scaffolding platform for Drp1 activation and mitochondrial translocation, leading to mitochondrial fission and increased lethal mitophagy. Ectopic expression of a constitutively active mutant RB, which is not inhibited by HPV-E7, attenuated ceramide-dependent mitophagy and cell death in HPV(+) HNSCC cells. Moreover, mutation of E2F5 to prevent Drp1 activation inhibited mitophagy in HPV(+) cells. Activation of Drp1 with E2F5-mimetic peptide for inducing Drp1 mitochondrial localization enhanced ceramide-mediated mitophagy and led to tumor suppression in HPV-negative HNSCC-derived xenograft tumors in response to cisplatin in SCID mice.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma de Células Escamosas/tratamiento farmacológico , Ceramidas/metabolismo , Cisplatino/administración & dosificación , Proteínas de la Membrana/metabolismo , Mitofagia , Proteínas E7 de Papillomavirus/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Animales , Antineoplásicos/metabolismo , Carcinoma de Células Escamosas/patología , Muerte Celular , Línea Celular Tumoral , Cisplatino/metabolismo , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones SCID , Trasplante de Neoplasias , Proteínas E7 de Papillomavirus/genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA