Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439057

RESUMEN

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Asunto(s)
Fibroblastos , Lámina Nuclear , Animales , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Ratones , Lámina Nuclear/metabolismo , Matriz Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(13): 7326-7337, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170015

RESUMEN

Neutrophil extracellular traps (NETs) are web-like DNA structures decorated with histones and cytotoxic proteins that are released by activated neutrophils to trap and neutralize pathogens during the innate immune response, but also form in and exacerbate sterile inflammation. Peptidylarginine deiminase 4 (PAD4) citrullinates histones and is required for NET formation (NETosis) in mouse neutrophils. While the in vivo impact of NETs is accumulating, the cellular events driving NETosis and the role of PAD4 in these events are unclear. We performed high-resolution time-lapse microscopy of mouse and human neutrophils and differentiated HL-60 neutrophil-like cells (dHL-60) labeled with fluorescent markers of organelles and stimulated with bacterial toxins or Candida albicans to induce NETosis. Upon stimulation, cells exhibited rapid disassembly of the actin cytoskeleton, followed by shedding of plasma membrane microvesicles, disassembly and remodeling of the microtubule and vimentin cytoskeletons, ER vesiculation, chromatin decondensation and nuclear rounding, progressive plasma membrane and nuclear envelope (NE) permeabilization, nuclear lamin meshwork and then NE rupture to release DNA into the cytoplasm, and finally plasma membrane rupture and discharge of extracellular DNA. Inhibition of actin disassembly blocked NET release. Mouse and dHL-60 cells bearing genetic alteration of PAD4 showed that chromatin decondensation, lamin meshwork and NE rupture and extracellular DNA release required the enzymatic and nuclear localization activities of PAD4. Thus, NETosis proceeds by a stepwise sequence of cellular events culminating in the PAD4-mediated expulsion of DNA.


Asunto(s)
Trampas Extracelulares/inmunología , Neutrófilos/inmunología , Arginina Deiminasa Proteína-Tipo 4/inmunología , Animales , Cromatina/inmunología , Citoesqueleto/inmunología , ADN/inmunología , ADN/metabolismo , Trampas Extracelulares/metabolismo , Células HL-60 , Histonas/inmunología , Humanos , Inmunidad Innata , Inflamación/inmunología , Ratones , Microtúbulos/inmunología , Activación Neutrófila/inmunología , Neutrófilos/metabolismo , Membrana Nuclear/inmunología
3.
Bioessays ; 42(11): e2000078, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32893352

RESUMEN

Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.


Asunto(s)
Filamentos Intermedios/fisiología , Mecanotransducción Celular/fisiología , Vimentina/fisiología , Animales , Fenómenos Fisiológicos Bacterianos , Interacciones Huésped-Patógeno/fisiología , Humanos , Filamentos Intermedios/química , Fenómenos Mecánicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Vimentina/química , Internalización del Virus
4.
Proc Natl Acad Sci U S A ; 116(52): 26555-26563, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31806762

RESUMEN

The cause of the elevated outflow resistance and consequent ocular hypertension characteristic of glaucoma is unknown. To investigate possible causes for this flow resistance, we used atomic force microscopy (AFM) with 10-µm spherical tips to probe the stiffness of the inner wall of Schlemm's canal as a function of distance from the tissue surface in normal and glaucomatous postmortem human eyes, and 1-µm spherical AFM tips to probe the region immediately below the tissue surface. To localize flow resistance, perfusion and imaging methods were used to characterize the pressure drop in the immediate vicinity of the inner wall using giant vacuoles that form in Schlemm's canal cells as micropressure sensors. Tissue stiffness increased with increasing AFM indentation depth. Tissues from glaucomatous eyes were stiffer compared with normal eyes, with greatly increased stiffness residing within ∼1 µm of the inner-wall surface. Giant vacuole size and density were similar in normal and glaucomatous eyes despite lower flow rate through the latter due to their higher flow resistance. This implied that the elevated flow resistance found in the glaucomatous eyes was localized to the same region as the increased tissue stiffness. Our findings implicate pathological changes to biophysical characteristics of Schlemm's canal endothelia and/or their immediate underlying extracellular matrix as cause for ocular hypertension in glaucoma.

5.
Bioinformatics ; 36(20): 5093-5103, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-32653917

RESUMEN

MOTIVATION: Microscopy images of cytoskeletal, nucleoskeletal and other structures contain complex junctions of overlapping filaments with arbitrary geometry. Yet, state-of-the-art algorithms generally perform single orientation analysis to segment these structures, resulting in gaps near junctions, or assume particular junction geometries to detect them. RESULTS: We developed a fully automated image analysis approach to address the challenge of determining the number of orientations and their values at each point in space to detect both lines and their junctions. Our approach does not assume any fixed number of orientations or any particular geometry in the case of multiple coincident orientations. It is based on analytically resolving coincident orientations revealed by steerable ridge filtering in an adaptive manner that balances orientation resolution and spatial localization. Combining this multiorientation resolution information with a generalization of the concept of non-maximum suppression allowed us to then identify the centers of lines and their junctions in an image. We validated our approach using a wide array of synthetic junctions and by comparison to manual segmentation. We also applied it to light microscopy images of cytoskeletal and nucleoskeletal networks. AVAILABILITY AND IMPLEMENTATION: https://github.com/mkitti/AdaptiveResolutionOrientationSpace. SUPPLEMENTARY INFORMATION: Supplementary information is available at Bioinformatics online.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Microscopía
6.
Small ; 16(43): e2004205, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33015961

RESUMEN

Increased stiffness of the Schlemm's canal (SC) endothelium in the aqueous humor outflow pathways has been associated with elevated intraocular pressure (IOP) in glaucoma. Novel treatments that relax this endothelium, such as actin depolymerizers and rho kinase inhibitors, are in development. Unfortunately, these treatments have undesirable off-target effects and a lower than desired potency. To address these issues, a targeted PEG-b-PPS micelle loaded with actin depolymerizer latrunculin A (tLatA-MC) is developed. Targeting of SC cells is achieved by modifying the micelle surface with a high affinity peptide that binds the VEGFR3/FLT4 receptor, a lymphatic lineage marker found to be highly expressed by SC cells relative to other ocular cells. During in vitro optimization, increasing the peptide surface density increased micellar uptake in SC cells while unexpectedly decreasing uptake by human umbilical vein endothelial cells (HUVEC). The functional efficacy of tLatA-MC, as measured by decreased SC cell stiffness compared to non-targeted micelles (ntLatA-MC) or targeted blank micelles (tBL-MC), is verified using atomic force microscopy. tLatA-MC reduced IOP in an in vivo mouse model by 30-50%. The results validate the use of a cell-softening nanotherapy to selectively modulate stiffness of SC cells for therapeutic reduction of IOP and treatment of glaucoma.


Asunto(s)
Glaucoma , Micelas , Animales , Humor Acuoso , Células Endoteliales , Ojo , Glaucoma/tratamiento farmacológico , Ratones
7.
Biophys J ; 116(3): 518-529, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30685055

RESUMEN

In development, wound healing, and pathology, cell biomechanical properties are increasingly recognized as being of central importance. To measure these properties, experimental probes of various types have been developed, but how each probe reflects the properties of heterogeneous cell regions has remained obscure. To better understand differences attributable to the probe technology, as well as to define the relative sensitivity of each probe to different cellular structures, here we took a comprehensive approach. We studied two cell types-Schlemm's canal endothelial cells and mouse embryonic fibroblasts (MEFs)-using four different probe technologies: 1) atomic force microscopy (AFM) with sharp tip, 2) AFM with round tip, 3) optical magnetic twisting cytometry (OMTC), and 4) traction microscopy (TM). Perturbation of Schlemm's canal cells with dexamethasone treatment, α-actinin overexpression, or RhoA overexpression caused increases in traction reported by TM and stiffness reported by sharp-tip AFM as compared to corresponding controls. By contrast, under these same experimental conditions, stiffness reported by round-tip AFM and by OMTC indicated little change. Knockout (KO) of vimentin in MEFs caused a diminution of traction reported by TM, as well as stiffness reported by sharp-tip and round-tip AFM. However, stiffness reported by OMTC in vimentin-KO MEFs was greater than in wild type. Finite-element analysis demonstrated that this paradoxical OMTC result in vimentin-KO MEFs could be attributed to reduced cell thickness. Our results also suggest that vimentin contributes not only to intracellular network stiffness but also cortex stiffness. Taken together, this evidence suggests that AFM sharp tip and TM emphasize properties of the actin-rich shell of the cell, whereas round-tip AFM and OMTC emphasize those of the noncortical intracellular network.


Asunto(s)
Citoesqueleto/metabolismo , Fenómenos Mecánicos , Animales , Fenómenos Biomecánicos , Células Endoteliales/citología , Fibroblastos/citología , Técnicas de Inactivación de Genes , Humanos , Ratones , Vimentina/deficiencia , Vimentina/genética
9.
Proc Natl Acad Sci U S A ; 111(38): 13876-81, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201985

RESUMEN

Increased flow resistance is responsible for the elevated intraocular pressure characteristic of glaucoma, but the cause of this resistance increase is not known. We tested the hypothesis that altered biomechanical behavior of Schlemm's canal (SC) cells contributes to this dysfunction. We used atomic force microscopy, optical magnetic twisting cytometry, and a unique cell perfusion apparatus to examine cultured endothelial cells isolated from the inner wall of SC of healthy and glaucomatous human eyes. Here we establish the existence of a reduced tendency for pore formation in the glaucomatous SC cell--likely accounting for increased outflow resistance--that positively correlates with elevated subcortical cell stiffness, along with an enhanced sensitivity to the mechanical microenvironment including altered expression of several key genes, particularly connective tissue growth factor. Rather than being seen as a simple mechanical barrier to filtration, the endothelium of SC is seen instead as a dynamic material whose response to mechanical strain leads to pore formation and thereby modulates the resistance to aqueous humor outflow. In the glaucomatous eye, this process becomes impaired. Together, these observations support the idea of SC cell stiffness--and its biomechanical effects on pore formation--as a therapeutic target in glaucoma.


Asunto(s)
Citoesqueleto , Células Endoteliales , Ojo , Glaucoma , Microscopía de Fuerza Atómica , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ojo/metabolismo , Ojo/patología , Glaucoma/metabolismo , Glaucoma/patología , Humanos
10.
APL Bioeng ; 6(1): 011503, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35146235

RESUMEN

Nuclear lamins are type V intermediate filament proteins that polymerize into complex filamentous meshworks at the nuclear periphery and in less structured forms throughout the nucleoplasm. Lamins interact with a wide range of nuclear proteins and are involved in numerous nuclear and cellular functions. Within the nucleus, they play roles in chromatin organization and gene regulation, nuclear shape, size, and mechanics, and the organization and anchorage of nuclear pore complexes. At the whole cell level, they are involved in the organization of the cytoskeleton, cell motility, and mechanotransduction. The expression of different lamin isoforms has been associated with developmental progression, differentiation, and tissue-specific functions. Mutations in lamins and their binding proteins result in over 15 distinct human diseases, referred to as laminopathies. The laminopathies include muscular (e.g., Emery-Dreifuss muscular dystrophy and dilated cardiomyopathy), neurological (e.g., microcephaly), and metabolic (e.g., familial partial lipodystrophy) disorders as well as premature aging diseases (e.g., Hutchinson-Gilford Progeria and Werner syndromes). How lamins contribute to the etiology of laminopathies is still unknown. In this review article, we summarize major recent findings on the structure, organization, and multiple functions of lamins in nuclear and more global cellular processes.

11.
Front Cell Dev Biol ; 10: 929495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36200046

RESUMEN

Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.

12.
ACS Appl Mater Interfaces ; 13(28): 32823-32836, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34232612

RESUMEN

Primary open-angle glaucoma is associated with elevated intraocular pressure (IOP) that damages the optic nerve and leads to gradual vision loss. Several agents that reduce the stiffness of pressure-regulating Schlemm's canal (SC) endothelial cells, in the conventional outflow pathway of the eye, lower IOP in glaucoma patients and are approved for clinical use. However, poor drug penetration and uncontrolled biodistribution limit their efficacy and produce local adverse effects. Compared to other ocular endothelia, FLT4/VEGFR3 is expressed at elevated levels by SC endothelial cells and can be exploited for targeted drug delivery. Here, we validate FLT4 receptors as clinically relevant targets on SC cells from glaucomatous human donors and engineer polymeric self-assembled nanocarriers displaying lipid-anchored targeting ligands that optimally engage this receptor. Targeting constructs were synthesized as lipid-PEGx-peptide, differing in the number of PEG spacer units (x), and were embedded in micelles. We present a novel proteolysis assay for quantifying ligand accessibility that we employ to design and optimize our FLT4-targeting strategy for glaucoma nanotherapy. Peptide accessibility to proteases correlated with receptor-mediated targeting enhancements. Increasing the accessibility of FLT4-binding peptides enhanced nanocarrier uptake by SC cells while simultaneously decreasing the uptake by off-target vascular endothelial cells. Using a paired longitudinal IOP study in vivo, we show that this enhanced targeting of SC cells translates to IOP reductions that are sustained for a significantly longer time as compared to controls. Confocal microscopy of murine anterior segment tissue confirmed nanocarrier localization to SC within 1 h after intracameral administration. This work demonstrates that steric effects between surface-displayed ligands and PEG coronas significantly impact the targeting performance of synthetic nanocarriers across multiple biological scales. Minimizing the obstruction of modular targeting ligands by PEG measurably improved the efficacy of glaucoma nanotherapy and is an important consideration for engineering PEGylated nanocarriers for targeted drug delivery.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Portadores de Fármacos/química , Glaucoma/tratamiento farmacológico , Presión Intraocular/efectos de los fármacos , Tiazolidinas/uso terapéutico , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Actinas/metabolismo , Anciano , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Células Endoteliales , Femenino , Glaucoma/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Limbo de la Córnea/citología , Masculino , Ratones Endogámicos C57BL , Micelas , Estructura Molecular , Péptidos/química , Polietilenglicoles/química , Sulfuros/química , Tiazolidinas/química
13.
J Cell Biol ; 218(12): 4079-4092, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31676718

RESUMEN

Mammalian cells frequently migrate through tight spaces during normal embryogenesis, wound healing, diapedesis, or in pathological situations such as metastasis. Nuclear size and shape are important factors in regulating the mechanical properties of cells during their migration through such tight spaces. At the onset of migratory behavior, cells often initiate the expression of vimentin, an intermediate filament protein that polymerizes into networks extending from a juxtanuclear cage to the cell periphery. However, the role of vimentin intermediate filaments (VIFs) in regulating nuclear shape and mechanics remains unknown. Here, we use wild-type and vimentin-null mouse embryonic fibroblasts to show that VIFs regulate nuclear shape and perinuclear stiffness, cell motility in 3D, and the ability of cells to resist large deformations. These changes increase nuclear rupture and activation of DNA damage repair mechanisms, which are rescued by exogenous reexpression of vimentin. Our findings show that VIFs provide mechanical support to protect the nucleus and genome during migration.


Asunto(s)
Núcleo Celular/metabolismo , Daño del ADN , Vimentina/metabolismo , Animales , Movimiento Celular , Colágeno/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Filamentos Intermedios/metabolismo , Ratones , Microscopía de Fuerza Atómica , Microscopía Confocal , Necrosis/metabolismo
14.
J Biomed Mater Res A ; 106(7): 1771-1779, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29468812

RESUMEN

Increased stiffness of Schlemm's canal endothelial cells (SC cells) is a major contributing factor to the increased pressure characteristic of primary open-angle glaucoma. New treatments for glaucoma are being developed using actin depolymerizers and rho kinase inhibitors to address this increased stiffness. However, these agents have off-target effects and are not as potent as had been hoped. We have developed a micellar nanocarrier assembled from poly(ethylene glycol)-bl-poly(propylene sulfide) copolymers capable of encapsulating latrunculin A (Lat A) with the goal of modulating SC cell stiffness. Lat A-loaded nanocarriers were similar in size and morphology to unloaded poly (ethylene glycol)-bl-poly(propylene sulfide) (PEG-bl-PPS) micelles, loaded Lat A at 62% encapsulation efficiency, and retained loaded Lat A for at least 22 days. The continued functional activity of Lat A following encapsulation within micelles was verified in murine macrophages, which are known to display decreased endocytosis in response to Lat A-dependent cytoskeletal disruption. Endocytic inhibition remained unchanged when comparing equal concentrations of micelle-loaded versus free form Lat A. Uptake of Lat A-loaded micelles by human SC cells was verified in vitro with no sign of cytotoxicity, and modulation of SC cell stiffness was measured by atomic force microscopy. Lat A-loaded micelles significantly decreased SC cell stiffness, which resulted in visible changes in cell morphology as observed by confocal microscopy. Our results demonstrate that PEG-bl-PPS micelles represent a tunable platform for the controlled intracellular delivery of latrunculin. These self-assembled polymeric nanobiomaterials may support the rational design and engineering of delivery systems for the treatment of glaucoma. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1771-1779, 2018.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Endoteliales/fisiología , Micelas , Polietilenglicoles/química , Sulfuros/química , Tiazolidinas/farmacología , Animales , Fenómenos Biomecánicos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Muerte Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Portadores de Fármacos/química , Endocitosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Células RAW 264.7 , Tiazolidinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA