Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17098, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273507

RESUMEN

Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous 'blue carbon' studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon-storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R-shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision-making.


Asunto(s)
Carbono , Suelo , Carbono/química , Suelo/química , Ecosistema , Humedales , Políticas
2.
New Phytol ; 240(5): 2121-2136, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37452486

RESUMEN

Predicting the fate of coastal marshes requires understanding how plants respond to rapid environmental change. Environmental change can elicit shifts in trait variation attributable to phenotypic plasticity and act as selective agents to shift trait means, resulting in rapid evolution. Comparably, less is known about the potential for responses to reflect the evolution of trait plasticity. Here, we assessed the relative magnitude of eco-evolutionary responses to interacting global change factors using a multifactorial experiment. We exposed replicates of 32 Schoenoplectus americanus genotypes 'resurrected' from century-long, soil-stored seed banks to ambient or elevated CO2 , varying levels of inundation, and the presence of a competing marsh grass, across two sites with different salinities. Comparisons of responses to global change factors among age cohorts and across provenances indicated that plasticity has evolved in five of the seven traits measured. Accounting for evolutionary factors (i.e. evolution and sources of heritable variation) in statistical models explained an additional 9-31% of trait variation. Our findings indicate that evolutionary factors mediate ecological responses to environmental change. The magnitude of evolutionary change in plant traits over the last century suggests that evolution could play a role in pacing future ecosystem response to environmental change.


Asunto(s)
Ecosistema , Humedales , Plantas/genética , Poaceae , Fenotipo
3.
Ecol Lett ; 22(1): 45-55, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30450720

RESUMEN

Dispersal is a key ecological process that is strongly influenced by both phenotype and environment. Here, we show that juvenile environment influences dispersal not only by shaping individual phenotypes, but also by changing the phenotypes of neighbouring conspecifics, which influence how individuals disperse. We used a model system (Tribolium castaneum, red flour beetles) to test how the past environment of dispersing individuals and their neighbours influences how they disperse in their current environment. We found that individuals dispersed especially far when exposed to a poor environment as adults if their phenotype, or even one-third of their neighbours' phenotypes, were shaped by a poor environment as juveniles. Juvenile environment therefore shapes dispersal both directly, by influencing phenotype, as well as indirectly, by influencing the external social environment. Thus, the juvenile environment of even a minority of individuals in a group can influence the dispersal of the entire group.


Asunto(s)
Ambiente , Tribolium , Animales , Fenotipo
4.
Nat Ecol Evol ; 8(9): 1584-1592, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39095611

RESUMEN

Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change. For ecologists, we outline how long-term ecological experiments can be expanded for evolutionary inquiry, and for evolutionary biologists, we illustrate how observed long-term ecological patterns may motivate new evolutionary questions. We advocate for collaborative, multi-site investigations and discuss barriers to conducting evolutionary work at network sites. Ultimately, these networks offer valuable information and opportunities to improve predictions of species' responses to global change.


Asunto(s)
Evolución Biológica , Ecología , Ecosistema , Cambio Climático
5.
Evol Appl ; 14(12): 2831-2847, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34950232

RESUMEN

There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often-used measurements like seed germination success are imperfect indicators of propagule viability. Using a Bayesian statistical framework, we evaluated sources of variability and tested for zero-inflation and overdispersion in data from 13 germination trials of soil-stored seeds of Schoenoplectus americanus, an ecosystem engineer in coastal salt marshes in the Chesapeake Bay. We hypothesized that these two model structures align with an ecological understanding of dormancy and revival: zero-inflation could arise due to failed germinations resulting from inviability or failed attempts to break dormancy, and overdispersion could arise by failing to measure important seed traits. A model that accounted for overdispersion, but not zero-inflation, was the best fit to our data. Tetrazolium viability tests corroborated this result: most seeds that failed to germinate did so because they were inviable, not because experimental methods failed to break their dormancy. Seed viability declined exponentially with seed age and was mediated by seed provenance and experimental conditions. Our results provide a framework for accounting for and explaining variability when estimating propagule viability from soil-stored natural archives which is a key aspect of using dormant propagules in eco-evolutionary studies.

6.
Trends Ecol Evol ; 33(3): 213-225, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29398103

RESUMEN

Climate change is altering natural selection globally, which could shift the evolutionary trajectories of traits central to the carbon (C) cycle. Here, we examine the components necessary for the evolution of C cycling traits to substantially drive changes in global C cycling and integrate these components into a framework of ecoevolutionary dynamics. Recent evidence points to the evolution of C cycling traits during the Anthropocene and the potential to significantly affect atmospheric CO2. We identify directions for further collaboration between evolutionary, ecosystem, and climate scientists to study these ecoevolutionary feedback dynamics and determine whether this evolution will ultimately accelerate or decelerate the current trend in rising atmospheric CO2.


Asunto(s)
Evolución Biológica , Ciclo del Carbono , Cambio Climático , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA