Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Surg Pathol Clin ; 17(3): 371-381, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39129137

RESUMEN

Thyroid cytology is a rapidly evolving field that has seen significant advances in recent years. Its main goal is to accurately diagnose thyroid nodules, differentiate between benign and malignant lesions, and risk stratify nodules when a definitive diagnosis is not possible. The current landscape of thyroid cytology includes the use of fine-needle aspiration for the diagnosis of thyroid nodules with the use of uniform, tiered reporting systems such as the Bethesda System for Reporting Thyroid Cytopathology. In recent years, molecular testing has emerged as a reliable preoperative diagnostic tool that stratifies patients into different risk categories (low, intermediate, or high) with varying probabilities of malignancy and helps guide patient treatment.


Asunto(s)
Glándula Tiroides , Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Biopsia con Aguja Fina/métodos , Biopsia con Aguja Fina/tendencias , Diagnóstico Diferencial , Glándula Tiroides/patología , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/diagnóstico , Nódulo Tiroideo/patología , Nódulo Tiroideo/diagnóstico
3.
Surg Pathol Clin ; 17(3): 521-531, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39129146

RESUMEN

The practice of cytopathology has been significantly refined in recent years, largely through the creation of consensus rule sets for the diagnosis of particular specimens (Bethesda, Milan, Paris, and so forth). In general, these diagnostic systems have focused on reducing intraobserver variance, removing nebulous/redundant categories, reducing the use of "atypical" diagnoses, and promoting the use of quantitative scoring systems while providing a uniform language to communicate these results. Computational pathology is a natural offshoot of this process in that it promises 100% reproducible diagnoses rendered by quantitative processes that are free from many of the biases of human practitioners.


Asunto(s)
Inteligencia Artificial , Citodiagnóstico , Citología , Humanos , Citodiagnóstico/métodos
4.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559138

RESUMEN

Summary: Elemental imaging provides detailed profiling of metal bioaccumulation, offering more precision than bulk analysis by targeting specific tissue areas. However, accurately identifying comparable tissue regions from elemental maps is challenging, requiring the integration of hematoxylin and eosin (H&E) slides for effective comparison. Facilitating the streamlined co-registration of Whole Slide Images (WSI) and elemental maps, TRACE enhances the analysis of tissue regions and elemental abundance in various pathological conditions. Through an interactive containerized web application, TRACE features real-time annotation editing, advanced statistical tools, and data export, supporting comprehensive spatial analysis. Notably, it allows for comparison of elemental abundances across annotated tissue structures and enables integration with other spatial data types through WSI co-registration. Availability and Implementation: Available on the following platforms- GitHub: jlevy44/trace_app , PyPI: trace_app , Docker: joshualevy44/trace_app , Singularity: joshualevy44/trace_app . Contact: joshua.levy@cshs.org. Supplementary information: Supplementary data are available.

5.
Pac Symp Biocomput ; 29: 464-476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160300

RESUMEN

Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Biología Computacional , Neoplasias/genética , Algoritmos , Análisis por Conglomerados
6.
NPJ Precis Oncol ; 8(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172524

RESUMEN

Successful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before adjuvant therapy. Intraoperative and postoperative radial sectioning, the most common form of margin assessment, can lead to incomplete excision and increase the risk of recurrence and repeat procedures. Mohs Micrographic Surgery is associated with complete removal of basal cell and squamous cell carcinoma through real-time margin assessment of 100% of the peripheral and deep margins. Real-time assessment in many tumor types is constrained by tissue size, complexity, and specimen processing / assessment time during general anesthesia. We developed an artificial intelligence platform to reduce the tissue preprocessing and histological assessment time through automated grossing recommendations, mapping and orientation of tumor to the surgical specimen. Using basal cell carcinoma as a model system, results demonstrate that this approach can address surgical laboratory efficiency bottlenecks for rapid and complete intraoperative margin assessment.

7.
Pac Symp Biocomput ; 29: 477-491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160301

RESUMEN

The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Challenges to current methods include limited focus on dermal elastosis variations and reliance on self-reported measures, which can introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.


Asunto(s)
Envejecimiento de la Piel , Humanos , Envejecimiento de la Piel/genética , Reproducibilidad de los Resultados , Biología Computacional , Perfilación de la Expresión Génica , Eosina Amarillenta-(YS) , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA