Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 590(7844): 134-139, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33348340

RESUMEN

As countries in Europe gradually relaxed lockdown restrictions after the first wave, test-trace-isolate strategies became critical to maintain the incidence of coronavirus disease 2019 (COVID-19) at low levels1,2. Reviewing their shortcomings can provide elements to consider in light of the second wave that is currently underway in Europe. Here we estimate the rate of detection of symptomatic cases of COVID-19 in France after lockdown through the use of virological3 and participatory syndromic4 surveillance data coupled with mathematical transmission models calibrated to regional hospitalizations2. Our findings indicate that around 90,000 symptomatic infections, corresponding to 9 out 10 cases, were not ascertained by the surveillance system in the first 7 weeks after lockdown from 11 May to 28 June 2020, although the test positivity rate did not exceed the 5% recommendation of the World Health Organization (WHO)5. The median detection rate increased from 7% (95% confidence interval, 6-8%) to 38% (35-44%) over time, with large regional variations, owing to a strengthening of the system as well as a decrease in epidemic activity. According to participatory surveillance data, only 31% of individuals with COVID-19-like symptoms consulted a doctor in the study period. This suggests that large numbers of symptomatic cases of COVID-19 did not seek medical advice despite recommendations, as confirmed by serological studies6,7. Encouraging awareness and same-day healthcare-seeking behaviour of suspected cases of COVID-19 is critical to improve detection. However, the capacity of the system remained insufficient even at the low epidemic activity achieved after lockdown, and was predicted to deteriorate rapidly with increasing incidence of COVID-19 cases. Substantially more aggressive, targeted and efficient testing with easier access is required to act as a tool to control the COVID-19 pandemic. The testing strategy will be critical to enable partial lifting of the current restrictive measures in Europe and to avoid a third wave.


Asunto(s)
Prueba de COVID-19/estadística & datos numéricos , COVID-19/diagnóstico , COVID-19/prevención & control , Portador Sano/epidemiología , Modelos Biológicos , Distribución por Edad , COVID-19/epidemiología , COVID-19/transmisión , Portador Sano/prevención & control , Portador Sano/transmisión , Femenino , Francia/epidemiología , Conductas Relacionadas con la Salud , Hospitalización/estadística & datos numéricos , Humanos , Incidencia , Masculino , Pandemias/estadística & datos numéricos , Aceptación de la Atención de Salud/estadística & datos numéricos , Distanciamiento Físico , SARS-CoV-2/aislamiento & purificación , Factores de Tiempo , Negativa del Paciente al Tratamiento/estadística & datos numéricos , Organización Mundial de la Salud
2.
Lancet ; 395(10227): 871-877, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-32087820

RESUMEN

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) epidemic has spread from China to 25 countries. Local cycles of transmission have already occurred in 12 countries after case importation. In Africa, Egypt has so far confirmed one case. The management and control of COVID-19 importations heavily rely on a country's health capacity. Here we evaluate the preparedness and vulnerability of African countries against their risk of importation of COVID-19. METHODS: We used data on the volume of air travel departing from airports in the infected provinces in China and directed to Africa to estimate the risk of importation per country. We determined the country's capacity to detect and respond to cases with two indicators: preparedness, using the WHO International Health Regulations Monitoring and Evaluation Framework; and vulnerability, using the Infectious Disease Vulnerability Index. Countries were clustered according to the Chinese regions contributing most to their risk. FINDINGS: Countries with the highest importation risk (ie, Egypt, Algeria, and South Africa) have moderate to high capacity to respond to outbreaks. Countries at moderate risk (ie, Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, and Kenya) have variable capacity and high vulnerability. We identified three clusters of countries that share the same exposure to the risk originating from the provinces of Guangdong, Fujian, and the city of Beijing, respectively. INTERPRETATION: Many countries in Africa are stepping up their preparedness to detect and cope with COVID-19 importations. Resources, intensified surveillance, and capacity building should be urgently prioritised in countries with moderate risk that might be ill-prepared to detect imported cases and to limit onward transmission. FUNDING: EU Framework Programme for Research and Innovation Horizon 2020, Agence Nationale de la Recherche.


Asunto(s)
Defensa Civil , Infecciones por Coronavirus , Epidemias/prevención & control , Recursos en Salud , Modelos Teóricos , Neumonía Viral , Vigilancia de la Población , Poblaciones Vulnerables , África/epidemiología , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Planificación en Salud , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , Medición de Riesgo , Viaje
3.
PLoS Med ; 17(7): e1003193, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32678827

RESUMEN

BACKGROUND: In the early months of 2020, a novel coronavirus disease (COVID-19) spread rapidly from China across multiple countries worldwide. As of March 17, 2020, COVID-19 was officially declared a pandemic by the World Health Organization. We collected data on COVID-19 cases outside China during the early phase of the pandemic and used them to predict trends in importations and quantify the proportion of undetected imported cases. METHODS AND FINDINGS: Two hundred and eighty-eight cases have been confirmed out of China from January 3 to February 13, 2020. We collected and synthesized all available information on these cases from official sources and media. We analyzed importations that were successfully isolated and those leading to onward transmission. We modeled their number over time, in relation to the origin of travel (Hubei province, other Chinese provinces, other countries) and interventions. We characterized the importation timeline to assess the rapidity of isolation and epidemiologically linked clusters to estimate the rate of detection. We found a rapid exponential growth of importations from Hubei, corresponding to a doubling time of 2.8 days, combined with a slower growth from the other areas. We predicted a rebound of importations from South East Asia in the successive weeks. Time from travel to detection has considerably decreased since first importation, from 14.5 ± 5.5 days on January 5, 2020, to 6 ± 3.5 days on February 1, 2020. However, we estimated 36% of detection of imported cases. This study is restricted to the early phase of the pandemic, when China was the only large epicenter and foreign countries had not discovered extensive local transmission yet. Missing information in case history was accounted for through modeling and imputation. CONCLUSIONS: Our findings indicate that travel bans and containment strategies adopted in China were effective in reducing the exportation growth rate. However, the risk of importation was estimated to increase again from other sources in South East Asia. Surveillance and management of traveling cases represented a priority in the early phase of the epidemic. With the majority of imported cases going undetected (6 out of 10), countries experienced several undetected clusters of chains of local transmissions, fueling silent epidemics in the community. These findings become again critical to prevent second waves, now that countries have reduced their epidemic activity and progressively phase out lockdown.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Modelos Teóricos , Neumonía Viral/epidemiología , Viaje , Betacoronavirus , COVID-19 , China/epidemiología , Control de Enfermedades Transmisibles/métodos , Infecciones por Coronavirus/transmisión , Humanos , Pandemias , Neumonía Viral/transmisión , SARS-CoV-2
4.
PLoS Comput Biol ; 15(3): e1006876, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30883545

RESUMEN

Multipartite viruses replicate through a puzzling evolutionary strategy. Their genome is segmented into two or more parts, and encapsidated in separate particles that appear to propagate independently. Completing the replication cycle, however, requires the full genome, so that a systemic infection of a host requires the concurrent presence of several particles. This represents an apparent evolutionary drawback of multipartitism, while its advantages remain unclear. A transition from monopartite to multipartite viral forms has been described in vitro under conditions of high multiplicity of infection, suggesting that cooperation between defective mutants is a plausible evolutionary pathway towards multipartitism. However, it is unknown how the putative advantages that multipartitism might enjoy at the microscopic level affect its epidemiology, or if an explicit advantange is needed to explain its ecological persistence. In order to disentangle which mechanisms might contribute to the rise and fixation of multipartitism, we here investigate the interaction between viral spreading dynamics and host population structure. We set up a compartmental model of the spread of a virus in its different forms and explore its epidemiology using both analytical and numerical techniques. We uncover that the impact of host contact structure on spreading dynamics entails a rich phenomenology of ecological relationships that includes cooperation, competition, and commensality. Furthermore, we find out that multipartitism might rise to fixation even in the absence of explicit microscopic advantages. Multipartitism allows the virus to colonize environments that could not be invaded by the monopartite form, while homogeneous contacts between hosts facilitate its spread. We conjecture that these features might have led to an increase in the diversity and prevalence of multipartite viral forms concomitantly with the expansion of agricultural practices.


Asunto(s)
Interacciones Huésped-Patógeno , Virosis/transmisión , Animales , Evolución Biológica , Humanos , Modelos Teóricos , Prevalencia , Simbiosis , Replicación Viral
5.
Euro Surveill ; 25(4)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32019667

RESUMEN

As at 27 January 2020, 42 novel coronavirus (2019-nCoV) cases were confirmed outside China. We estimate the risk of case importation to Europe from affected areas in China via air travel. We consider travel restrictions in place, three reported cases in France, one in Germany. Estimated risk in Europe remains high. The United Kingdom, Germany and France are at highest risk. Importation from Beijing and Shanghai would lead to higher and widespread risk for Europe.


Asunto(s)
Viaje en Avión , Betacoronavirus , Infecciones por Coronavirus , Neumonía Viral , Política Pública , Medición de Riesgo , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades , Europa (Continente)/epidemiología , Humanos , Modelos Teóricos , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , SARS-CoV-2
6.
Phys Rev Lett ; 120(6): 068302, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481258

RESUMEN

Current understanding of the critical outbreak condition on temporal networks relies on approximations (time scale separation, discretization) that may bias the results. We propose a theoretical framework to compute the epidemic threshold in continuous time through the infection propagator approach. We introduce the weak commutation condition allowing the interpretation of annealed networks, activity-driven networks, and time scale separation into one formalism. Our work provides a coherent connection between discrete and continuous time representations applicable to realistic scenarios.

8.
PLoS Comput Biol ; 11(3): e1004152, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25763816

RESUMEN

Understanding how epidemics spread in a system is a crucial step to prevent and control outbreaks, with broad implications on the system's functioning, health, and associated costs. This can be achieved by identifying the elements at higher risk of infection and implementing targeted surveillance and control measures. One important ingredient to consider is the pattern of disease-transmission contacts among the elements, however lack of data or delays in providing updated records may hinder its use, especially for time-varying patterns. Here we explore to what extent it is possible to use past temporal data of a system's pattern of contacts to predict the risk of infection of its elements during an emerging outbreak, in absence of updated data. We focus on two real-world temporal systems; a livestock displacements trade network among animal holdings, and a network of sexual encounters in high-end prostitution. We define the node's loyalty as a local measure of its tendency to maintain contacts with the same elements over time, and uncover important non-trivial correlations with the node's epidemic risk. We show that a risk assessment analysis incorporating this knowledge and based on past structural and temporal pattern properties provides accurate predictions for both systems. Its generalizability is tested by introducing a theoretical model for generating synthetic temporal networks. High accuracy of our predictions is recovered across different settings, while the amount of possible predictions is system-specific. The proposed method can provide crucial information for the setup of targeted intervention strategies.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Biología Computacional/métodos , Trazado de Contacto/métodos , Epidemias/estadística & datos numéricos , Modelos Biológicos , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Bases de Datos Factuales , Humanos , Medición de Riesgo , Trabajo Sexual/estadística & datos numéricos , Factores de Tiempo
9.
Infect Dis Model ; 9(1): 1-9, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38090610

RESUMEN

In the European Union, mass vaccination against COVID-19 staved off the strict restrictions that had characterized early epidemic response. Now, vaccination campaigns are focusing on booster doses, and primary vaccinations have all but halted. Still, 52 million European adults are unvaccinated. We investigated if reaching the still unvaccinated population in future vaccination campaigns would substantially decrease the current burden of COVID-19, which is substantial. We focused on vaccination homophily, whereby those who are unvaccinated are mostly in contact with other unvaccinated, making COVID-19 circulation easier. We quantified vaccination homophily and estimated its impact on COVID-19 circulation. We used an online survey of 1,055,286 people from 22 European countries during early 2022. We computed vaccination homophily as the association between reported vaccination status and perceived vaccination uptake among one's own social contacts, using a case-referent design and a hierarchical logistic model. We used this information in an analysis of the COVID-19 reproduction ratio to determine the impact of vaccine homophily in transmission. Vaccination homophily was present and strong everywhere: the average odds ratio of being vaccinated for a 10-percentage-point increase in coverage among contacts was 1.66 (95% CI=(1.60, 1.72)). Homophily was positively associated with the strictness of COVID-19-related restrictions in 2020 (Pearson = 0.49, P = .03). In the countries studied, 12%-to-18% of the reproduction ratio would be attributable to vaccine homophily. Reducing vaccination homophily may curb the reproduction ratio substantially even to the point of preventing recurrent epidemic waves. In addition to boosting those already vaccinated, increasing primary vaccination should remain a high priority in future vaccination campaigns, to reduce vaccination homophily: this combined strategy may decrease COVID-19 burden.

10.
medRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39148844

RESUMEN

Although climate change poses a well-established risk to human health, present-day health impacts, particularly those resulting from climate-induced behavioral changes, are under-quantified. Analyzing the U.S. West Coast wildfires of September 2020, we found that poor air quality drives people indoors, increasing the circulation of airborne pathogens like COVID-19. Indoor masking rates as low as 10% can mitigate this risk, offering a clear path to enhance public health responses during wildfires.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA