Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(37): e2403067121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39240969

RESUMEN

The unconventional superconductor UTe[Formula: see text] exhibits numerous signatures of spin-triplet superconductivity-a rare state of matter which could enable quantum computation protected against decoherence. UTe[Formula: see text] possesses a complex phase landscape comprising two magnetic field-induced superconducting phases, a metamagnetic transition to a field-polarized state, along with pair- and charge-density wave orders. However, contradictory reports between studies performed on UTe[Formula: see text] specimens of varying quality have severely impeded theoretical efforts to understand the microscopic origins of the exotic superconductivity. Here, we report a comprehensive suite of high magnetic field measurements on a generation of pristine quality UTe[Formula: see text] crystals. Our experiments reveal a significantly revised high magnetic field superconducting phase diagram in the ultraclean limit, showing a pronounced sensitivity of field-induced superconductivity to the presence of crystalline disorder. We employ a Ginzburg-Landau model that excellently captures this acute dependence on sample quality. Our results suggest that in close proximity to a field-induced metamagnetic transition the enhanced role of magnetic fluctuations-that are strongly suppressed by disorder-is likely responsible for tuning UTe[Formula: see text] between two distinct spin-triplet superconducting phases.

2.
Phys Rev Lett ; 132(26): 266503, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996318

RESUMEN

UTe_{2} is a spin-triplet superconductor candidate for which high quality samples with long mean free paths have recently become available, enabling quantum oscillation measurements to probe its Fermi surface and effective carrier masses. It has recently been reported that UTe_{2} possesses a 3D Fermi surface component [Phys. Rev. Lett. 131, 036501 (2023)PRLTAO0031-900710.1103/PhysRevLett.131.036501]. The distinction between 2D and 3D Fermi surface sections in triplet superconductors can have important implications regarding the topological properties of the superconductivity. Here we report the observation of oscillatory components in the magnetoconductance of UTe_{2} at high magnetic fields. We find that these oscillations are well described by quantum interference between quasiparticles traversing semiclassical trajectories spanning magnetic breakdown networks. Our observations are consistent with a quasi-2D model of this material's Fermi surface based on prior dHvA-effect measurements. Our results strongly indicate that UTe_{2}-which exhibits a multitude of complex physical phenomena-possesses a remarkably simple Fermi surface consisting exclusively of two quasi-2D cylindrical sections.

3.
Phys Rev Lett ; 126(15): 157201, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929262

RESUMEN

We present acoustic signatures of the electric quadrupolar degrees of freedom in the honeycomb-layer compound UNi_{4}B. The transverse ultrasonic mode C_{66} shows softening below 30 K both in the paramagnetic phase and antiferromagnetic phases down to ∼0.33 K. Furthermore, we traced magnetic field-temperature phase diagrams up to 30 T and observed a highly anisotropic elastic response within the honeycomb layer. These observations strongly suggest that Γ_{6}(E_{2g}) electric quadrupolar degrees of freedom in localized 5f^{2} (J=4) states are playing an important role in the magnetic toroidal dipole order and magnetic-field-induced phases of UNi_{4}B, and evidence some of the U ions remain in the paramagnetic state even if the system undergoes magnetic toroidal ordering.

4.
Phys Rev Lett ; 123(3): 036406, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31386447

RESUMEN

Magnetotransport constitutes a useful probe to understand the interplay between electronic band topology and magnetism in spintronic devices. A recent theory of Lu and Shen [Phys. Rev. Lett. 112, 146601 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.146601] on magnetically doped topological insulators predicts that quantum corrections Δκ to the temperature dependence of conductivity can change sign across the Curie transition. This phenomenon has been attributed to a suppression of the Berry phase of the topological surface states at the Fermi level, caused by a magnetic energy gap. Here, we demonstrate experimentally that Δκ can reverse its sign even when the Berry phase at the Fermi level remains unchanged. The contradictory behavior to theory predictions is resolved by extending the model by Lu and Shen to a nonmonotonic temperature scaling of the inelastic scattering length showing a turning point at the Curie transition.

5.
J Magn Magn Mater ; 400: 125-129, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29445250

RESUMEN

Structural changes through the first-order paramagnetic-antiferromagnetic phase transition of Dy3Ru4Al12 at 7 K have been studied by means of X-ray diffraction and thermal expansion measurements. The compound crystallizes in a hexagonal crystal structure of Gd3Ru4Al12 type (P63/mmc space group), and no structural phase transition has been found in the temperature interval between 2.5 and 300 K. Nevertheless, due to the spin-lattice coupling the crystal volume undergoes a small orthorhombic distortion of the order of 2×10-5 as the compound enters the antiferromagnetic state. We propose that the first-order phase transition is not driven by the structural changes but rather by the exchange interactions present in the system.

6.
Nat Commun ; 15(1): 223, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172154

RESUMEN

The heavy fermion paramagnet UTe2 exhibits numerous characteristics of spin-triplet superconductivity. Efforts to understand the microscopic details of this exotic superconductivity have been impeded by uncertainty regarding the underlying electronic structure. Here we directly probe the Fermi surface of UTe2 by measuring magnetic quantum oscillations in pristine quality crystals. We find an angular profile of quantum oscillatory frequency and amplitude that is characteristic of a quasi-2D Fermi surface, which we find is well described by two cylindrical Fermi sheets of electron- and hole-type respectively. Additionally, we find that both cylindrical Fermi sheets possess considerable undulation but negligible small-scale corrugation, which may allow for their near-nesting and therefore promote magnetic fluctuations that enhance the triplet pairing mechanism. Importantly, we find no evidence for the presence of any 3D Fermi surface sections. Our results place strong constraints on the possible symmetry of the superconducting order parameter in UTe2.

7.
J Phys Condens Matter ; 32(42): 425601, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32585641

RESUMEN

There is an ongoing dispute in the community about the absence of a magnetic quantum critical point (QCP) in the noncentrosymmetric heavy fermion compound CeRhSi3. In order to explore this question we prepared single crystals of CeRh(Si1-x Ge x )3 with x = 0.05 and 0.15 and determined the temperature-pressure (T-p) phase diagram by means of measurements of the electrical resistivity. The substitution of isoelectronic but large Ge enforces a lattice volume increase resulting in a weakening of the Kondo interaction. As a result, the x = 0.05 and x = 0.15 compound exhibit a transition into the antiferromagnetic (AFM) at higher temperatures being T N = 4.7 K and T N1 = 19.7 K, respectively. Application of pressure suppresses T N (T N1) monotonically and pressure induced superconductivity is observed in both Ge-substituted compounds above p ⩾ 2.16 GPa (x = 0.05) and p ⩾ 2.93 GPa (x = 0.15). Extrapolation of T N(p) → 0 of CeRh(Si0.95Ge0.05)3 yields a critical pressure of p c ≈ 3.4 GPa (in CeRh(Si0.85Ge0.15)3 p c ≈ 3.5 GPa) pointing to the presence of an AFM QCP located deep inside the superconducting state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA