Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Cancer ; 21(1): 641, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051744

RESUMEN

BACKGROUND: FoxP3+ Regulatory T cells (Tregs) and indoleamine-2,3-dioxygenase (IDO) participate in the formation of an immunosuppressive tumor microenvironment (TME) in malignant cutaneous melanoma (CM). Recent studies have reported that IDO expression correlates with poor prognosis and greater Breslow's depth, but results concerning the role of FoxP3+ Tregs in CM have been controversial. Furthermore, the correlation between IDO and Tregs has not been substantially studied in CM, although IDO is known to be an important regulator of Tregs activity. METHODS: We investigated the associations of FoxP3+ Tregs, IDO+ tumor cells and IDO+ stromal immune cells with tumor stage, prognostic factors and survival in CM. FoxP3 and IDO were immunohistochemically stained from 29 benign and 29 dysplastic nevi, 18 in situ -melanomas, 48 superficial and 62 deep melanomas and 67 lymph node metastases (LNMs) of CM. The number of FoxP3+ Tregs and IDO+ stromal immune cells, and the coverage and intensity of IDO+ tumor cells were analysed. RESULTS: The number of FoxP3+ Tregs and IDO+ stromal immune cells were significantly higher in malignant melanomas compared with benign lesions. The increased expression of IDO in melanoma cells was associated with poor prognostic factors, such as recurrence, nodular growth pattern and increased mitotic count. Furthermore, the expression of IDO in melanoma cells was associated with reduced recurrence-free survival. We further showed that there was a positive correlation between IDO+ tumor cells and FoxP3+ Tregs. CONCLUSIONS: These results indicate that IDO is strongly involved in melanoma progression. FoxP3+ Tregs also seems to contribute to the immunosuppressive TME in CM, but their significance in melanoma progression remains unclear. The positive association of FoxP3+ Tregs with IDO+ melanoma cells, but not with IDO+ stromal immune cells, indicates a complex interaction between IDO and Tregs in CM, which demands further studies.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Melanoma/inmunología , Recurrencia Local de Neoplasia/epidemiología , Neoplasias Cutáneas/inmunología , Linfocitos T Reguladores/inmunología , Escape del Tumor , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Inmunohistoquímica , Masculino , Melanoma/diagnóstico , Melanoma/mortalidad , Melanoma/patología , Persona de Mediana Edad , Recurrencia Local de Neoplasia/inmunología , Pronóstico , Estudios Retrospectivos , Piel/inmunología , Piel/patología , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral/inmunología , Adulto Joven , Melanoma Cutáneo Maligno
2.
Microb Cell Fact ; 20(1): 177, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496831

RESUMEN

BACKGROUND: Lignocellulose biomass has been investigated as a feedstock for second generation biofuels and other value-added products. Some of the processes for biofuel production utilize cellulases and hemicellulases to convert the lignocellulosic biomass into a range of soluble sugars before fermentation with microorganisms such as yeast Saccharomyces cerevisiae. One of these sugars is L-arabinose, which cannot be utilized naturally by yeast. The first step in L-arabinose catabolism is its transport into the cells, and yeast lacks a specific transporter, which could perform this task. RESULTS: We identified Trire2_104072 of Trichoderma reesei as a potential L-arabinose transporter based on its expression profile. This transporter was described already in 2007 as D-xylose transporter XLT1. Electrophysiology experiments with Xenopus laevis oocytes and heterologous expression in yeast revealed that Trire2_104072 is a high-affinity L-arabinose symporter with a Km value in the range of [Formula: see text] 0.1-0.2 mM. It can also transport D-xylose but with low affinity (Km [Formula: see text] 9 mM). In yeast, L-arabinose transport was inhibited slightly by D-xylose but not by D-glucose in an assay with fivefold excess of the inhibiting sugar. Comparison with known L-arabinose transporters revealed that the expression of Trire2_104072 enabled yeast to uptake L-arabinose at the highest rate in conditions with low extracellular L-arabinose concentration. Despite the high specificity of Trire2_104072 for L-arabinose, the growth of its T. reesei deletion mutant was only affected at low L-arabinose concentrations. CONCLUSIONS: Due to its high affinity for L-arabinose and low inhibition by D-glucose or D-xylose, Trire2_104072 could serve as a good candidate for improving the existing pentose-utilizing yeast strains. The discovery of a highly specific L-arabinose transporter also adds to our knowledge of the primary metabolism of T. reesei. The phenotype of the deletion strain suggests the involvement of other transporters in L-arabinose transport in this species.


Asunto(s)
Proteínas Fúngicas , Hypocreales/metabolismo , Proteínas de Transporte de Membrana , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo
3.
Nucleic Acids Res ; 46(18): e111, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29924368

RESUMEN

Biotechnological production of fuels, chemicals and proteins is dependent on efficient production systems, typically genetically engineered microorganisms. New genome editing methods are making it increasingly easy to introduce new genes and functionalities in a broad range of organisms. However, engineering of all these organisms is hampered by the lack of suitable gene expression tools. Here, we describe a synthetic expression system (SES) that is functional in a broad spectrum of fungal species without the need for host-dependent optimization. The SES consists of two expression cassettes, the first providing a weak, but constitutive level of a synthetic transcription factor (sTF), and the second enabling strong, at will tunable expression of the target gene via an sTF-dependent promoter. We validated the SES functionality in six yeast and two filamentous fungi species in which high (levels beyond organism-specific promoters) as well as adjustable expression levels of heterologous and native genes was demonstrated. The SES is an unprecedentedly broadly functional gene expression regulation method that enables significantly improved engineering of fungi. Importantly, the SES system makes it possible to take in use novel eukaryotic microbes for basic research and various biotechnological applications.


Asunto(s)
Clonación Molecular/métodos , Hongos/genética , Regulación Fúngica de la Expresión Génica , Ingeniería Genética/métodos , Vectores Genéticos/genética , Aspergillus niger/genética , Expresión Génica , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Trichoderma/genética
4.
BMC Cancer ; 18(1): 664, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914429

RESUMEN

BACKGROUND: Diffusely infiltrating astrocytomas originate from astrocytic glial cells or their precursor cells and are the most common type of brain tumors in adults. In this retrospective study, we investigated the content of hyaluronan, its cell surface receptor, CD44 and the expression of hyaluronan metabolizing enzymes, in these aggressive tumors. Hyaluronan is the main component of extracellular matrix in the brain. In many tumors, aberrant hyaluronan metabolism implicates aggressive disease progression and metastatic potential. METHODS: Our material consisted of 163 diffusely infiltrating astrocytomas (WHO grades II-IV). Tumor samples were processed into tissue microarray (TMA) blocks. The TMA sections were stained for hyaluronan, CD44, hyaluronan synthases 1-3 (HAS1-3) and hyaluronidase 2 (HYAL2). The immunostaining results were compared with χ2 -test or with Kruskal-Wallis test for correlation with clinicopathological parameters and survival analyses were done with Kaplan-Meier log rank test and Cox regression. RESULTS: Hyaluronan and CD44 were strongly expressed in astrocytic gliomas but their expression did not correlate with WHO grade or any other clinicopathological parameters whereas high HAS2 staining intensity was observed in IDH1 negative tumors (p = 0.003). In addition, in non-parametric tests increased HAS2 staining intensity correlated with increased cell proliferation (p = 0.013) and in log rank test with decreased overall survival of patients (p = 0.001). In the Cox regression analysis HAS2 expression turned out to be a significant independent prognostic factor (p = 0.008). CONCLUSIONS: This study indicates that elevated expression of HAS2 is associated with glioma progression and suggests that HAS2 has a prognostic significance in diffusely infiltrating astrocytomas.


Asunto(s)
Astrocitoma/enzimología , Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/enzimología , Hialuronano Sintasas/biosíntesis , Adulto , Astrocitoma/mortalidad , Astrocitoma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Femenino , Humanos , Receptores de Hialuranos/análisis , Receptores de Hialuranos/biosíntesis , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
5.
Fungal Genet Biol ; 70: 86-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25046860

RESUMEN

Preserving an optimal intracellular pH is critical for cell fitness and productivity. The pH homeostasis of the industrially important filamentous fungus Trichoderma reesei (Hypocrea jecorina) is largely unexplored. We analyzed the impact of growth conditions on regulation of intracellular pH of the strain Rut-C30 and the strain M106 derived from the Rut-C30 that accumulates L-galactonic acid-from provided galacturonic acid-as a consequence of L-galactonate dehydratase deletion. For live-cell measurements of intracellular pH, we used the genetically encoded ratiometric pH-sensitive fluorescent protein RaVC. Glucose and lactose, used as carbon sources, had specific effects on intracellular pH of T. reesei. The growth in lactose-containing medium extensively acidified cytosol, while intracellular pH of hyphae cultured in a medium with glucose remained at a higher level. The strain M106 maintained higher intracellular pH in the presence of D-galacturonic acid than its parental strain Rut-C30. Acidic external pH caused significant acidification of cytosol. Altogether, the pH homeostasis of T. reesei Rut-C30 strain is sensitive to extracellular pH and the degree of acidification depends on carbon source.


Asunto(s)
Trichoderma/metabolismo , Citoplasma/metabolismo , Glucosa/metabolismo , Ácidos Hexurónicos/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Concentración de Iones de Hidrógeno , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Espacio Intracelular/metabolismo , Lactosa/metabolismo , Ácido Sórbico/metabolismo , Azúcares Ácidos/metabolismo , Trichoderma/crecimiento & desarrollo
6.
Appl Environ Microbiol ; 80(9): 2737-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24561586

RESUMEN

Functional expression in heterologous hosts is often less successful for integral membrane proteins than for soluble proteins. Here, two Ambrosiozyma monospora transporters were successfully expressed in Saccharomyces cerevisiae as tagged proteins. Growth of A. monospora on l-arabinose instead of glucose caused transport activities of l-arabinose, l-arabitol, and ribitol, measured using l-[1-(3)H]arabinose, l-[(14)C]arabitol, and [(14)C]ribitol of demonstrated purity. A. monospora LAT1 and LAT2 genes were cloned earlier by using their ability to improve the growth of genetically engineered Saccharomyces cerevisiae on l-arabinose. However, the l-arabinose and pentitol transport activities of S. cerevisiae carrying LAT1 or LAT2 are only slightly greater than those of control strains. S. cerevisiae carrying the LAT1 or LAT2 gene fused in frame to the genes for green fluorescent protein (GFP) or red fluorescent protein (mCherry) or adenylate kinase (AK) exhibited large (>3-fold for LAT1; >20-fold for LAT2) increases in transport activities. Lat1-mCherry transported l-arabinose with high affinity (Km ≈ 0.03 mM) and l-arabitol and ribitol with very low affinity (Km ≥ 75 mM). The Lat2-GFP, Lat2-mCherry, and Lat2-AK fusion proteins could not transport l-arabinose but were high-affinity pentitol transporters (Kms ≈ 0.2 mM). The l-arabinose and pentitol transport activities of A. monospora could not be completely explained by any combination of the observed properties of tagged Lat1 and Lat2, suggesting either that tagging and expression in a foreign membrane alters the transport kinetics of Lat1 and/or Lat2 or that A. monospora contains at least one more l-arabinose transporter.


Asunto(s)
Arabinosa/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pentosas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Secuencias de Aminoácidos , Transporte Biológico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Ingeniería Metabólica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética
7.
Appl Environ Microbiol ; 79(23): 7179-87, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038689

RESUMEN

The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified.


Asunto(s)
Citosol/química , Citometría de Flujo/métodos , Saccharomyces cerevisiae/química , Análisis de la Célula Individual/métodos , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Concentración de Iones de Hidrógeno , Coloración y Etiquetado/métodos
8.
Metab Eng ; 14(4): 427-36, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22709678

RESUMEN

An NAD(+)-dependent D-xylose dehydrogenase, XylB, from Caulobacter crescentus was expressed in Saccharomyces cerevisiae, resulting in production of 17 ± 2 g D-xylonate l(-1) at 0.23 gl(-1)h(-1) from 23 g D-xylose l(-1) (with glucose and ethanol as co-substrates). D-Xylonate titre and production rate were increased and xylitol production decreased, compared to strains expressing genes encoding T. reesei or pig liver NADP(+)-dependent D-xylose dehydrogenases. D-Xylonate accumulated intracellularly to ∼70 mgg(-1); xylitol to ∼18 mgg(-1). The aldose reductase encoding gene GRE3 was deleted to reduce xylitol production. Cells expressing D-xylonolactone lactonase xylC from C. crescentus with xylB initially produced more extracellular D-xylonate than cells lacking xylC at both pH 5.5 and pH 3, and sustained higher production at pH 3. Cell vitality and viability decreased during D-xylonate production at pH 3.0. An industrial S. cerevisiae strain expressing xylB efficiently produced 43 g D-xylonate l(-1) from 49 g D-xylose l(-1).


Asunto(s)
Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Ácidos Urónicos/metabolismo , Xilosa/metabolismo , Oxidorreductasas de Alcohol/biosíntesis , Oxidorreductasas de Alcohol/genética , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Animales , Caulobacter crescentus/enzimología , Caulobacter crescentus/genética , Etanol/metabolismo , Glucosa/metabolismo , Hígado/enzimología , Saccharomyces cerevisiae/genética , Porcinos/metabolismo
9.
Sci Rep ; 11(1): 14678, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282161

RESUMEN

Trichoderma reesei is an ascomycete fungus known for its capability to secrete high amounts of extracellular cellulose- and hemicellulose-degrading enzymes. These enzymes are utilized in the production of second-generation biofuels and T. reesei is a well-established host for their production. Although this species has gained considerable interest in the scientific literature, the sugar transportome of T. reesei remains poorly characterized. Better understanding of the proteins involved in the transport of different sugars could be utilized for engineering better enzyme production strains. In this study we aimed to shed light on this matter by characterizing multiple T. reesei transporters capable of transporting various types of sugars. We used phylogenetics to select transporters for expression in Xenopus laevis oocytes to screen for transport activities. Of the 18 tested transporters, 8 were found to be functional in oocytes. 10 transporters in total were investigated in oocytes and in yeast, and for 3 of them no transport function had been described in literature. This comprehensive analysis provides a large body of new knowledge about T. reesei sugar transporters, and further establishes X. laevis oocytes as a valuable tool for studying fungal sugar transporters.


Asunto(s)
Hypocreales/metabolismo , Proteínas de Transporte de Membrana/fisiología , Azúcares/metabolismo , Animales , Metabolismo de los Hidratos de Carbono/genética , Fenómenos Electrofisiológicos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Hypocreales/clasificación , Hypocreales/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Técnicas de Placa-Clamp , Filogenia , Xenopus laevis
10.
Biotechnol Biofuels ; 13: 158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32944074

RESUMEN

BACKGROUND: Trichoderma reesei is an ascomycete fungus that has a tremendous capability of secreting extracellular proteins, mostly lignocellulose-degrading enzymes. Although many aspects of the biology of this organism have been unfolded, the roles of the many sugar transporters coded in its genome are still a mystery with a few exceptions. One of the most interesting sugar transporters that has thus far been discovered is the cellulose response transporter 1 (CRT1), which has been suggested to be either a sugar transporter or a sensor due to its seemingly important role in cellulase induction. RESULTS: Here we show that CRT1 is a high-affinity cellobiose transporter, whose function can be complemented by the expression of other known cellobiose transporters. Expression of two sequence variants of the crt1 gene in Saccharomyces cerevisiae revealed that only the variant listed in the RUT-C30 genome annotation has the capability to transport cellobiose and lactose. When expressed in the Δ crt1 strain, the variant listed in the QM6a genome annotation offers partial complementation of the cellulase induction, while the expression of the RUT-C30 variant or cellobiose transporters from two other fungal species fully restore the cellulase induction. CONCLUSIONS: These results add to our knowledge about the fungal metabolism of cellulose-derived oligosaccharides, which have the capability of inducing the cellulase production in many species. They also help us to deepen our understanding of the T. reesei lactose metabolism, which can have important consequences as this sugar is used as the inducer of protein secretion in many industrial processes which employ this species.

11.
Biotechnol Biofuels ; 13: 137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782473

RESUMEN

BACKGROUND: Trichoderma reesei is one of the best-known cellulolytic organisms, producing large quantities of a complete set of extracellular cellulases and hemicellulases for the degradation of lignocellulosic substances. Hence, T. reesei is a biotechnically important host and it is used commercially in enzyme production, of both native and foreign origin. Many strategies for producing enzymes in T. reesei rely on the cbh1 and other cellulase gene promoters for high-level expression and these promoters require induction by sophorose, lactose or other inducers for high productivity during manufacturing. RESULTS: We described an approach for producing high levels of secreted proteins by overexpression of a transcription factor ACE3 in T. reesei. We refined the ace3 gene structure and identified specific ACE3 variants that enable production of secreted cellulases and hemicellulases on glucose as a sole carbon source (i.e., in the absence of an inducer). These specific ACE3 variants contain a full-length Zn2Cys6 binuclear cluster domain at the N-terminus and a defined length of truncations at the C-terminus. When expressed at a moderate level in the fungal cells, the ACE3 variants can induce high-level expression of cellulases and hemicellulases on glucose (i.e., in the absence of an inducer), and further improve expression on lactose or glucose/sophorose (i.e., in the presence of an inducer). Finally, we demonstrated that this method is applicable to industrial strains and fermentation conditions, improving protein production both in the absence and in the presence of an inducer. CONCLUSIONS: This study demonstrates that overexpression of ACE3 variants enables a high level of protein production in the absence of an inducer, and boosts protein production in the presence of an inducer. It is an efficient approach to increase protein productivity and to reduce manufacturing costs.

12.
Melanoma Res ; 29(3): 237-247, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30399061

RESUMEN

The role of tumor-associated macrophages (TAMs) in cutaneous melanoma is controversial. TAMs include immunogenic and immunosuppressive subtypes, and have distinct functions according to their microanatomical localization. Our aim was to investigate TAMs in benign, premalignant, and malignant melanocytic lesions to determine possible associations with tumor progression and clinicopathological characteristics. In total, 184 tissue samples, including benign and dysplastic nevi, in-situ melanomas, superficial (Breslow's depth <1 mm), and deep (Breslow's depth >4 mm) invasive melanomas and lymph node metastases, were analyzed for macrophage content. Samples were stained immunohistochemically for CD68 and CD163, representing all TAMs and M2-macrophages, respectively. Macrophages were counted by hotspot analysis, and assessed semiquantitatively from the tumor cell nests and stromal component of malignant cases. CD68+ and CD163+ TAMs were more abundant in invasive melanomas compared with benign nevi. The proportion of TAMs in the tumor nests was higher in deep melanomas and lymph node metastases compared with superficially invasive melanomas. High amounts of CD68+ macrophages in tumor cell nests were associated with recurrence, whereas low CD163+ macrophage proportion in tumor stroma was associated with recurrence and in primary melanomas also with poor overall survival. TAMs seem to promote tumor progression in cutaneous melanoma. In particular, CD68+ TAMs and their abundance in tumor nests were associated with poor prognostic factors. However, the correlation of low stromal CD163+ TAM proportion with a poor prognosis indicates that the role of TAMs depends on their subtype and microanatomical localization.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Macrófagos/patología , Melanoma/patología , Recurrencia Local de Neoplasia/patología , Receptores de Superficie Celular/metabolismo , Neoplasias Cutáneas/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Macrófagos/metabolismo , Masculino , Melanoma/metabolismo , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Neoplasias Cutáneas/metabolismo , Adulto Joven , Melanoma Cutáneo Maligno
13.
BMC Genomics ; 7: 32, 2006 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-16504068

RESUMEN

BACKGROUND: Secretion stress is caused by compromised folding, modification or transport of proteins in the secretory pathway. In fungi, induction of genes in response to secretion stress is mediated mainly by the unfolded protein response (UPR) pathway. This study aims at uncovering transcriptional responses occurring in the filamentous fungi Trichoderma reesei exposed to secretion stress and comparing these to those found in the yeast Saccharomyces cerevisiae. RESULTS: Chemostat cultures of T. reesei expressing human tissue plasminogen activator (tPA) and batch bioreactor cultures treated with dithiothreitol (DTT) to prevent correct protein folding were analysed with cDNA subtraction and cDNA-amplified fragment length polymorphism (AFLP) experiments. ESTs corresponding to 457 unique genes putatively induced under secretion stress were isolated and the expression pattern of 60 genes was confirmed by Northern analysis. Expression of these genes was also studied in a strain over-expressing inositol-requiring enzyme 1 (IREI) protein, a sensor for the UPR pathway. To compare the data with that of S. cerevisiae, published transcriptome profiling data on various stress responses in S. cerevisiae was reanalysed. The genes up-regulated in response to secretion stress included a large number of secretion related genes in both organisms. In addition, analysis of T. reesei revealed up regulation of the cpc1 transcription factor gene and nucleosomal genes. The induction of the cpcA and histone gene H4 were shown to be induced also in cultures of Aspergillus nidulans treated with DTT. CONCLUSION: Analysis of the genes induced under secretion stress has revealed novel features in the stress response in T. reesei and in filamentous fungi. We have demonstrated that in addition to the previously rather well characterised induction of genes for many ER proteins or secretion related proteins also other types of responses exist.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Trichoderma/genética , Aminoácidos/biosíntesis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Northern Blotting , Biología Computacional , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Etiquetas de Secuencia Expresada , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Biblioteca de Genes , Genómica , Histonas/biosíntesis , Histonas/genética , Polimorfismo Genético , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética , Trichoderma/metabolismo
14.
Mol Biotechnol ; 58(12): 821-831, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27714589

RESUMEN

Two novel GH3 family thermostable ß-glucosidases from the filamentous fungus Chaetomium atrobrunneum (CEL3a and CEL3b) were expressed in Trichoderma reesei, purified by two-step ion exchange chromatography, and characterized. Both enzymes were active over a wide range of pH as compared to Neurospora crassa ß-glucosidase GH3-3, which was also expressed in T. reesei and purified. The optimum temperature of both C. atrobrunneum enzymes was around 60 °C at pH 5, and both enzymes had better thermal and pH stability and higher resistance to metallic compounds and to glucose inhibition than GH3-3. They also showed higher activity against oligosaccharides composed of glucose units and linked with ß-1,4-glycosidic bonds and moreover, had higher affinity for cellotriose over cellobiose. In hydrolysis tests against Avicel cellulose and steam-exploded sugarcane bagasse, performed at 45 °C, particularly the CEL3a enzyme performed similarly to N. crassa GH3-3 ß-glucosidase. Taking into account the thermal stability of the C. atrobrunneum ß-glucosidases, they both represent promising alternatives as enzyme mixture components for improved cellulose saccharification at elevated temperatures.


Asunto(s)
Chaetomium/enzimología , Trichoderma/genética , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Chaetomium/química , Chaetomium/genética , Clonación Molecular , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Lignina/química , Temperatura , Trichoderma/metabolismo , beta-Glucosidasa/química
15.
Biotechnol Biofuels ; 7(1): 14, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24472375

RESUMEN

BACKGROUND: The soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemicellulolytic activities. Production of cellulases and hemicellulases is modulated by environmental and physiological conditions. Several regulators affecting the expression of cellulase and hemicellulase genes have been identified but more factors still unknown are believed to be present in the genome of T. reesei. RESULTS: We have used transcriptional profiling data from T. reesei cultures in which cellulase/hemicellulase production was induced by the addition of different lignocellulose-derived materials to identify putative novel regulators for cellulase and hemicellulase genes. Based on this induction data, supplemented with other published genome-wide data on different protein production conditions, 28 candidate regulatory genes were selected for further studies and they were overexpressed in T. reesei. Overexpression of seven genes led to at least 1.5-fold increased production of cellulase and/or xylanase activity in the modified strains as compared to the parental strain. Deletion of gene 77513, here designated as ace3, was found to be detrimental for cellulase production and for the expression of several cellulase genes studied. This deletion also significantly reduced xylanase activity and expression of xylan-degrading enzyme genes. Furthermore, our data revealed the presence of co-regulated chromosomal regions containing carbohydrate-active enzyme genes and candidate regulatory genes. CONCLUSIONS: Transcriptional profiling results from glycoside hydrolase induction experiments combined with a previous study of specific protein production conditions was shown to be an effective method for finding novel candidate regulatory genes affecting the production of cellulases and hemicellulases. Recombinant strains with improved cellulase and/or xylanase production properties were constructed, and a gene essential for cellulase gene expression was found. In addition, more evidence was gained on the chromatin level regional regulation of carbohydrate-active enzyme gene expression.

16.
J Biol Chem ; 282(31): 22775-85, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17553800

RESUMEN

The machinery for trafficking proteins through the secretory pathway is well conserved in eukaryotes, from fungi to mammals. We describe the isolation of the snc1, sso1, and sso2 genes encoding exocytic SNARE proteins from the filamentous fungus Trichoderma reesei. The localization and interactions of the T. reesei SNARE proteins were studied with advanced fluorescence imaging methods. The SSOI and SNCI proteins co-localized in sterol-independent clusters on the plasma membrane in subapical but not apical hyphal regions. The vesicle SNARE SNCI also localized to the apical vesicle cluster within the Spitzenkörper of the growing hyphal tips. Using fluorescence lifetime imaging microscopy and Foerster resonance energy transfer analysis, we quantified the interactions between these proteins with high spatial resolution in living cells. Our data showed that the site of ternary SNARE complex formation between SNCI and SSOI or SSOII, respectively, is spatially segregated. SNARE complex formation could be detected between SNCI and SSOI in subapical hyphal compartments along the plasma membrane, but surprisingly, not in growing hyphal tips, previously thought to be the main site of exocytosis. In contrast, SNCI.SSOII complexes were found exclusively in growing apical hyphal compartments. These findings demonstrate spatially distinct sites of plasma membrane SNARE complex formation in fungi and the existence of multiple exocytic SNAREs, which are functionally and spatially segregated. This is the first demonstration of spatially regulated SNARE interactions within the same membrane.


Asunto(s)
Proteínas SNARE/metabolismo , Trichoderma/metabolismo , Membrana Celular/metabolismo , Clonación Molecular , Evolución Molecular , Transferencia Resonante de Energía de Fluorescencia , Prueba de Complementación Genética , Microscopía Confocal , Microscopía Fluorescente , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Temperatura
17.
Mol Microbiol ; 47(4): 1149-61, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12581366

RESUMEN

The unfolded protein response (UPR) is a regulatory pathway activating genes involved in multiple functions related to folding, quality control and transport of secreted proteins. Characterization of the hac1/hacA genes encoding the UPR transcription factors from the filamentous fungi Trichoderma reesei and Aspergillus nidulans is described in this article. The corresponding gene in Saccharomyces cerevisiae is activated through a non-spliceosomal intron-splicing reaction. The T. reesei hac1 and A. nidulans hacA mRNAs undergo an analogous splicing reaction of a 20-nt-long intron during UPR induction. This splicing changes the reading frame of the mRNA and thus could bring in an activation domain to the HACI/HACA proteins. In addition to the non-spliceosomal splicing, the hac1/A mRNAs of the filamentous fungi are truncated at the 5'-flanking region upon UPR induction. An upstream open reading frame is omitted from the mRNAs due to the truncation, and evidence is presented showing that the truncated T. reesei hac1 mRNA is translated more efficiently than a full-length mRNA. This paper reports a novel combination of two different regulatory mechanisms of a transcription factor gene, both operational at the mRNA level.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Trichoderma/metabolismo , Secuencia de Aminoácidos , Aspergillus nidulans/genética , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , ADN de Hongos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos , Prueba de Complementación Genética , Intrones , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Pliegue de Proteína , Procesamiento Postranscripcional del ARN , Empalme del ARN , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Factores de Transcripción/genética , Trichoderma/genética
18.
Appl Environ Microbiol ; 69(4): 2065-72, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12676684

RESUMEN

One strategy to obtain better yields of secreted proteins has been overexpression of single endoplasmic reticulum-resident foldases or chaperones. We report here that manipulation of the unfolded-protein response (UPR) pathway regulator, HAC1, affects production of both native and foreign proteins in the yeast Saccharomyces cerevisiae. The effects of HAC1 deletion and overexpression on the production of a native protein, invertase, and two foreign proteins, Bacillus amyloliquefaciens alpha-amylase and Trichoderma reesei endoglucanase EGI, were studied. Disruption of HAC1 caused decreases in the secretion of both alpha-amylase (70 to 75% reduction) and EGI (40 to 50% reduction) compared to the secretion by the parental strain. Constitutive overexpression of HAC1 caused a 70% increase in alpha-amylase secretion but had no effect on EGI secretion. The invertase levels were twofold higher in the strain overexpressing HAC1. Also, the effect of the active form of T. reesei hac1 was tested in S. cerevisiae. hac1 expression caused a 2.4-fold increase in the secretion of alpha-amylase in S. cerevisiae and also slight increases in invertase and total protein production. Overexpression of both S. cerevisiae HAC1 and T. reesei hac1 caused an increase in the expression of the known UPR target gene KAR2 at early time points during cultivation.


Asunto(s)
Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Pliegue de Proteína , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Bacillus/enzimología , Bacillus/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Celulasa/genética , Celulasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
19.
Appl Environ Microbiol ; 69(12): 6979-86, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14660339

RESUMEN

Unfolded-protein response (UPR) denotes the upregulation of endoplasmic reticulum (ER)-resident chaperone and foldase genes and numerous other genes involved in secretory functions during the accumulation of unfolded proteins into the ER. Overexpression of individual foldases and chaperones has been used in attempts to improve protein production in different production systems. We describe here a novel strategy to improve foreign-protein production. We show that the constitutive induction of the UPR pathway in Aspergillus niger var. awamori can be achieved by expressing the activated form of the transcription factor hacA. This induction enhances the production of Trametes versicolor laccase by up to sevenfold and of bovine preprochymosin by up to 2.8-fold in this biotechnically important fungus. The regulatory range of UPR was studied by analyzing the mRNA levels of novel A. niger var. awamori genes involved in different secretory functions. This revealed both similarities and differences to corresponding studies in Saccharomyces cerevisiae.


Asunto(s)
Aspergillus niger/metabolismo , Quimosina/metabolismo , Regulación Fúngica de la Expresión Génica , Lacasa/metabolismo , Pliegue de Proteína , Factores de Transcripción/metabolismo , Animales , Aspergillus niger/genética , Aspergillus niger/crecimiento & desarrollo , Basidiomycota/enzimología , Basidiomycota/genética , Bovinos , Quimosina/genética , Medios de Cultivo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lacasa/genética , Factores de Transcripción/genética , Transformación Genética
20.
Appl Environ Microbiol ; 70(1): 459-67, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14711675

RESUMEN

Two genes involved in protein secretion, encoding the Rab protein YPT1/YPTA and the general fusion factor NSFI/NSFA, were characterized from two filamentous fungi, Trichoderma reesei and Aspergillus niger var. awamori. The isolated genes showed a high level of conservation with their Saccharomyces cerevisiae and mammalian counterparts, and T. reesei ypt1 was shown to complement yeast Ypt1p depletion. The transcriptional regulation of the T. reesei ypt1, nsf1, and sar1 genes, involved in protein trafficking, was studied with mycelia treated with the folding inhibitor dithiothreitol (DTT) and with brefeldin A, which inhibits membrane traffic between the endoplasmic reticulum and Golgi complex. The well-known inducer of the yeast and T. reesei unfolded protein response (UPR), DTT, induced the nsf1 gene and the protein disulfide isomerase gene, pdi1, in both of the experiments, and sar1 mRNA increased in only one experiment under strong UPR induction. The ypt1 mRNA did not show a clear increase during DTT treatment. Brefeldin A strongly induced pdi1 and all of the intracellular trafficking genes studied. These results suggest the possibility that the whole secretory pathway of T. reesei could be induced at the transcriptional level by stress responses caused by protein accumulation in the secretory pathway.


Asunto(s)
Aspergillus niger/fisiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Trichoderma/fisiología , Proteínas de Unión al GTP rab/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Medios de Cultivo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Respuesta al Choque Térmico , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transcripción Genética , Trichoderma/genética , Trichoderma/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA