Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Metab Brain Dis ; 31(3): 579-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26666246

RESUMEN

Oxidative stress has been described as important to Huntington disease (HD) progression. In a previous HD study, we identified several carbonylated proteins, including pyridoxal kinase and antiquitin, both of which are involved in the metabolism of pyridoxal 5´-phosphate (PLP), the active form of vitamin B6. In the present study, pyridoxal kinase levels were quantified and showed to be decreased both in HD patients and a R6/1 mouse model, compared to control samples. A metabolomic analysis was used to analyze metabolites in brain samples of HD patients and R6/1 mice, compared to control samples using mass spectrometry. This technique allowed detection of increased concentrations of pyridoxal, the substrate of pyridoxal kinase. In addition, PLP, the product of the reaction, was decreased in striatum from R6/1 mice. Furthermore, glutamate and cystathionine, both substrates of PLP-dependent enzymes were increased in HD. This reinforces the hypothesis that PLP synthesis is impaired, and could explain some alterations observed in the disease. Together, these results identify PLP as a potential therapeutic agent.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Enfermedad de Huntington/metabolismo , Estrés Oxidativo/fisiología , Fosfato de Piridoxal/metabolismo , Adulto , Anciano , Animales , Cistationina/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Adulto Joven
2.
Biochim Biophys Acta ; 1833(8): 2004-15, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23481038

RESUMEN

Within Saccharomyces cerevisiae, Hcm1is a member of the forkhead transcription factor family with a role in chromosome organization. Our group recently described its involvement in mitochondrial biogenesis and stress resistance, and reports here that Hcm1 played a role in adaptation to respiratory metabolism when glucose or nitrogen was decreased. Regulation of Hcm1 activity occurs in at least three ways: i) protein quantity, ii) subcellular localization, and iii) transcriptional activity. Transcriptional activity was measured using a reporter gene fused to a promoter that contains a binding site for Hcm1. We also analyzed the levels of several genes whose expression is known to be regulated by Hcm1 levels and the role of the main kinases known to respond to nutrients. Lack of sucrose-nonfermenting (Snf1) kinase increases cytoplasmic localization of Hcm1, whereas Δtor1 cells showed a mild increase in nuclear Hcm1. In vitro experiments showed that Snf1 clearly phosphorylates Hcm1 while Sch9 exerts a milder phosphorylation. Although in vitroTor1 does not directly phosphorylate Hcm1, in vivo rapamycin treatment increases nuclear Hcm1. We conclude that Hcm1 participates in the adaptation of cells from fermentation to respiratory metabolism during nutrient scarcity. According to our hypothesis, when nutrient levels decrease, Snf1 phosphorylates Hcm1. This results in a shift from the cytoplasm to the nucleus and increased transcriptional activity of genes involved in respiration, use of alternative energy sources, NAD synthesis and oxidative stress resistance.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Alimentos , Factores de Transcripción Forkhead/genética , Glucosa/genética , Glucosa/metabolismo , Nitrógeno/metabolismo , Estrés Oxidativo/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sacarosa/metabolismo , Transcripción Genética
3.
Front Plant Sci ; 15: 1398014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779078

RESUMEN

Volatile organic compounds (VOCs) are responsible for the antagonistic activity exerted by different biological control agents (BCAs). In this study, VOCs produced by Pseudomonas synxantha strain 117-2b were tested against two kiwifruit fungal postharvest pathogens: Cadophora luteo-olivacea and Botrytis cinerea, through in vitro and in vivo assays. In vitro results demonstrated that P. synxantha 117-2b VOCs inhibit mycelial growth of C. luteo-olivacea and B. cinerea by 56% and 42.8% after 14 and 5 days of exposition, respectively. In vivo assay demonstrated significant inhibitory effects. VOCs used as a biofumigant treatment reduced skin-pitting symptoms disease severity by 28.5% and gray mold incidence by 66.6%, with respect to the untreated control. BCA volatiles were analyzed by solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC/MS), and among the detected compounds, 1-butanol, 3-methyl and 1-nonene resulted as the most produced. Their efficacy as pure synthetic compounds was assayed against mycelial growth of fungal pathogens by different concentrations (0.34, 0.56, and 1.12 µL mL-1 headspace). The effect of the application of VOCs as a biofumigant was also investigated as the expression level of seven defense-related genes of kiwifruit at different exposition times. The results indicated an enhancement of the expression of almost all the genes starting from 3 h of treatment. These results described P. synxantha VOCs characteristics and their potential as a promising method to adopt for protecting kiwifruit from postharvest diseases caused by C. luteo-olivacea and B. cinerea.

4.
J Fungi (Basel) ; 9(6)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37367589

RESUMEN

Pathogenic fungi are influenced by many biotic and abiotic factors. Among them, light is a source of information for fungi and also a stress factor that triggers multiple biological responses, including the activation of secondary metabolites, such as the production of melanin pigments. In this study, we analyzed the melanin-like production in in vitro conditions, as well as the expression of all biosynthetic and regulatory genes of the DHN-melanin pathway in the three main Monilinia species upon exposure to light conditions (white, black, blue, red, and far-red wavelengths). On the other hand, we analyzed, for the first time, the metabolism related to ROS in M. fructicola, through the production of hydrogen peroxide (H2O2) and the expression of stress-related genes under different light conditions. In general, the results indicated a clear importance of black light on melanin production and expression in M. laxa and M. fructicola, but not in M. fructigena. Regarding ROS-related metabolism in M. fructicola, blue light highlighted by inhibiting the expression of many antioxidant genes. Overall, it represents a global description of the effect of light on the regulation of two important secondary mechanisms, essential for the adaptation of the fungus to the environment and its survival.

5.
J Fungi (Basel) ; 9(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36836253

RESUMEN

Monilinia is the causal agent of brown rot in stone fruit. The three main species that cause this disease are Monilinia laxa, M. fructicola, and M. fructigena, and their infection capacity is influenced by environmental factors (i.e., light, temperature, and humidity). To tolerate stressful environmental conditions, fungi can produce secondary metabolites. Particularly, melanin-like pigments can contribute to survival in unfavorable conditions. In many fungi, this pigment is due to the accumulation of 1,8-dihydroxynaphthalene melanin (DHN). In this study, we have identified for the first time the genes involved in the DHN pathway in the three main Monilinia spp. and we have proved their capacity to synthetize melanin-like pigments, both in synthetic medium and in nectarines at three stages of brown rot development. The expression of all the biosynthetic and regulatory genes of the DHN-melanin pathway has also been determined under both in vitro and in vivo conditions. Finally, we have analyzed the role of three genes involved in fungi survival and detoxification, and we have proved that there exists a close relationship between the synthesis of these pigments and the activation of the SSP1 gene. Overall, these results deeply describe the importance of DHN-melanin in the three main species of Monilinia: M. laxa, M. fructicola, and M. fructigena.

6.
Plant Sci ; 327: 111558, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36493930

RESUMEN

The most devastating fungal disease of peaches and nectarines is brown rot, caused by Monilinia spp. Among the many plant responses against biotic stress, plant terpenoids play essential protective functions, including antioxidant activities and inhibition of pathogen growth. Herein, we aimed to characterize the expression of terpenoid biosynthetic genes in fruit tissues that presented different susceptibility to brown rot. For that, we performed artificial inoculations with Monilinia laxa at two developmental stages (immature and mature fruit) of two nectarine cultivars ('Venus' -mid-early season cultivar - and 'Albared' -late season cultivar-) and in vitro tests of the key compounds observed in the transcriptional results. All fruit were susceptible to M. laxa except for immature 'Venus' nectarines. In response to the pathogen, the mevalonic acid (MVA) pathway of the 'Venus' cultivar was highly induced in both stages rather than the methylerythritol phosphate (MEP) pathway, being the expression of some MEP-related biosynthetic genes [e.g., PROTEIN FARNESYLTRANSFERASE (PpPFT), and 3S-LINALOOL SYNTHASE (PpLIS)] different between stages. In 'Albared', both stages presented similar responses to M. laxa for both pathways. Comparisons between cultivars showed that HYDROXYMETHYLGLUTARYL-CoA REDUCTASE (PpHMGR1) expression levels were common in susceptible tissues. Within all the terpenoid biosynthetic pathway, linalool- and farnesal-related pathways stood out for being upregulated only in resistant tissues, which suggest their role in mediating the resistance to M. laxa. The in vitro antifungal activity of linalool and farnesol (precursor of farnesal) revealed fungicidal and fungistatic activities against M. laxa, respectively, depending on the concentration tested. Understanding the different responses between resistant and susceptible tissues could be further considered for breeding or developing new strategies to control brown rot in stone fruit.


Asunto(s)
Farnesol , Frutas , Frutas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Técnicas In Vitro
7.
Int J Food Microbiol ; 373: 109700, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35580409

RESUMEN

The development of brown rot in stone fruit caused by the necrotrophic fungus Monilinia spp. is influenced by many abiotic factors, such as temperature, humidity, and light. Specifically, filamentous fungi perceive light as a signal for ecophysiological and adaptive responses. We have explored how specific light wavelengths affect the in vitro development, the regulation of putative development genes and the virulence of the main species of Monilinia (M. laxa, M. fructicola and M. fructigena). After subjecting Monilinia spp. to different light wavelengths (white, black, blue, red, far-red) for 7 days, several differences in their phenotype were observed among light conditions, but also among species. These species of Monilinia exhibited a different phenotypic plasticity in response to light regarding pigmentation, growth, and specially conidiation of colonies. In this sense, we observed that the conidial production was higher in M. laxa than M. fructicola, while M. fructigena showed an inability to produce conidia under the tested conditions. Growth rate among species was significantly lower in M. fructicola under red light wavelength while among light conditions it was increased under far-red light wavelength for M. laxa and under black light for M. fructicola; in contrast, no statistical differences were observed for M. fructigena. Gene expression analysis of 13 genes involved in fungal development of Monilinia spp. revealed a significant difference among the three species of Monilinia, and especially depended on light wavelengths. Among them, a high expression of OPT1, RGS2, RGS3 and SPP1 genes was observed in M. laxa, and LTF1 and STE12 in M. fructicola under black light. In contrast, a high expression of REG1 and C6TF1 genes occurred in both M. fructicola and M. laxa subject to red and far-red light wavelength, respectively. When nectarines were artificially infected with M. laxa and M. fructicola subjected to black light, the virulence was clearly reduced, but not in M. fructigena. Overall, results presented herein demonstrate that light wavelengths are a key abiotic factor for the biology of Monilinia spp., specially modulating its capacity to form conidia, and thus, influencing its spreading and the onset of the disease on nectarines during postharvest.


Asunto(s)
Ascomicetos , Frutas , Adaptación Fisiológica , Frutas/microbiología , Esporas Fúngicas , Virulencia/genética
8.
Plant Physiol Biochem ; 171: 38-48, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971954

RESUMEN

ROS are known as toxic by-products but also as important signaling molecules playing a key role in fruit development and ripening. To counteract the negative effects of ROS, plants and fruit own multiple ROS-scavenging mechanisms aiming to ensure a balanced ROS homeostasis. In the present study, changes in specific ROS (i.e. H2O2) as well as enzymatic (SOD, CAT, POX, APX) and non-enzymatic (phenylpropanoids, carotenoids and ascorbate) ROS-scavenging systems were investigated along four different stages of nectarine (cv. 'Diamond Ray') fruit development and ripening (39, 70, 94 and 121 DAFB) both at the metabolic (28 individual metabolites or enzymes) and transcriptional level (24 genes). Overall, our results demonstrate a complex ROS-related transcriptome and metabolome reprogramming during fruit development and ripening. At earlier fruit developmental stages an increase on the respiration rate is likely triggering an oxidative burst and resulting in the activation of specific ethylene response factors (ERF1). In turn, ROS-responsive genes or the biosynthesis of specific antioxidant compounds (i.e. phenylpropanoids) were highly expressed or accumulated at earlier fruit developmental stages (39-70 DAFB). Nonetheless, as the fruit develops, the decrease in the fruit respiration rate and the reduction of ERF1 genes leads to lower levels of most non-enzymatic antioxidants and higher accumulation of H2O2. Based on available literature and the observed accumulation dynamics of H2O2, it is anticipated that this compound may not only be a by-product of ROS-scavenging but also a signaling molecule accumulated during the ripening of nectarine fruit.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Carotenoides , Etilenos , Frutas/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Front Plant Sci ; 12: 666985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567018

RESUMEN

The development of brown rot caused by the necrotrophic fungi Monilinia spp. in stone fruit under field and postharvest conditions depends, among others, on environmental factors. The effect of temperature and humidity are well studied but there is little information on the role of light in disease development. Herein, we studied the effect of two lighting treatments and a control condition (darkness) on: (i) several growth parameters of two Monilinia spp. (M. laxa and M. fructicola) grown in vitro and (ii) the light effect in their capacity to rot the fruit (nectarines) when exposed to the different lighting treatments. We also assessed the effect of such abiotic factors in the development of the disease on inoculated nectarines during postharvest storage. Evaluations also included testing the effect of fruit bagging on disease development as well as on ethylene production. Under in vitro conditions, lighting treatments altered colony morphology and conidiation of M. laxa but this effect was less acute in M. fructicola. Such light-induced changes under in vitro development also altered the capacity of M. laxa and M. fructicola to infect nectarines, with M. laxa becoming less virulent. The performance of Monilinia spp. exposed to treatments was also determined in vivo by inoculating four bagged or unbagged nectarine cultivars, indicating an impaired disease progression. Incidence and lesion diameter of fruit exposed to the different lighting treatments during postharvest showed that the effect of the light was intrinsic to the nectarine cultivar but also Monilinia spp. dependent. While lighting treatments reduced M. laxa incidence, they enhanced M. fructicola development. Preharvest conditions such as fruit bagging also impaired the ethylene production of inoculated fruit, which was mainly altered by M. laxa and M. fructicola, while the bag and light effects were meaningless. Thus, we provide several indications of how lighting treatments significantly alter Monilinia spp. behavior both in vitro and during the interaction with stone fruit. This study highlights the importance of modulating the lighting environment as a potential strategy to minimize brown rot development on stone fruit and to extent the shelf-life period of fruit in postharvest, market, and consumer's house.

10.
Food Sci Technol Int ; 27(4): 366-379, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32960656

RESUMEN

In the present work, the major physiological and compositional changes occurring during 'Merrill O'Henry' peach growth and its relationship with susceptibility to three strains of Monilinia spp. at 49, 77, 126 and 160 days after full bloom were explored. Results of disease incidence indicated wide differences among phenological stages, being 49 and 126 days after full bloom the moment when peaches showed significantly lower susceptibility to brown rot (40 and 23% of rotten fruit, respectively, for strain ML8L). Variation in brown rot susceptibility among different growth stages was also strain-dependent. Lower fruit susceptibility to ML8L at 49 and 126 was accompanied by noticeable changes in the fruit ethylene and respiration patterns, and also in sugars and organic acids content. By employing a partial least squares regression model, a strong negative relationship between citric acid, and a positive association of ethylene with peach susceptibility to Monilinia spp. at diverse phenological stages were observed. The results obtained herein highlight that the content of certain compounds such as citrate, malate and sucrose; the respiratory activity and the fruit ethylene production may mediate in a coordinated manner the fruit resistance to Monilinia spp. at different phenological stages of peach fruit.


Asunto(s)
Ascomicetos , Prunus persica , Frutas , Enfermedades de las Plantas , Prunus persica/microbiología
11.
Plant Sci ; 308: 110925, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34034873

RESUMEN

Epigenetic regulation is crucial to ensure a coordinated control of the different events that occur during fruit development and ripening. Sirtuins are NAD+-dependent histone deacetylases involved in the regulation of gene expression of many biological processes. However, their implications in the Rosaceae family remains unexplored. Accordingly, in this work, we demonstrated the phylogenetic divergence of both sirtuins among Rosaceae species. We then characterized the expression pattern of both SRT1 and SRT2 in selected pome and stone fruit species. Both SRT1 and SRT2 significantly changed during the fruit development and ripening of apple, nectarine and pear fruit, displaying a different expression profile. Such differences could explain in part their different ripening behaviour. To further unravel the role of sirtuins on the fruit development and ripening processes, a deeper analysis was performed using pear as a fruit model. In pear, PbSRT1 gene expression levels were negatively correlated with specific hormones (i.e. abscisic acid, indole-3-acetic acid, gibberellin A1 and zeatin) during the first phases of fruit development. PbSRT2 seemed to directly mediate pear ripening in an ethylene-independent manner. This hypothesis was further reinforced by treating the fruit with the ethylene inhibitor 1-methylcyclopropene (1-MCP). Instead, enhanced PbSRT2 along pear growth/ripening positively correlated with the accumulation of major sugars (R2 > 0.94), reinforcing the idea that sugar metabolism may be a target of epigenetic modifications during fruit ripening. Overall, the results from this study point out, for the first time, the importance that sirtuins have in the regulation of fruit growth and ripening of pear fruit by likely regulating hormonal and sugar metabolism.


Asunto(s)
Frutas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Pyrus/crecimiento & desarrollo , Pyrus/genética , Sirtuinas/genética , Epigénesis Genética , Frutas/genética , Malus/genética , Malus/crecimiento & desarrollo , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Sirtuinas/metabolismo , Especificidad de la Especie
12.
Plant Sci ; 299: 110599, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32900437

RESUMEN

Monilinia spp. may infect stone fruit at any growth stage, although susceptibility to brown rot depends on both host properties and climatological conditions. This said, no studies deciphering the host response in the interaction between peach blossoms and Monilinia spp. are yet available. This study presents an in-depth characterization of the role of ethylene in the interaction of 'Merrill O'Henry' peach petals (Prunus persica (L.) Batch) with Monilinia laxa and M. fructicola. We investigated the physiological responses of the host and the fungi to the application of ethylene and 1-methylcyclopropene (1-MCP) as well as the molecular patterns associated with the biosynthetic and ethylene-dependent responses during the interaction of both Monilinia species with the host. The incidence of both species was differentially affected by 1-MCP and ethylene; M. laxa was favoured by the enhanced host ethylene production associated with the treatments whereas M. fructicola reduced its infection capacity. Such differences were host-dependent as treatments did not affect growth or colony morphology of Monilinia spp. Besides, host ethylene production was altered in M. laxa inoculated petals, either by the fungus or the host itself. Molecular analysis revealed some important ERFs that could be involved in the different ability of both species to activate a cascade response of peach petals against these pathogens.


Asunto(s)
Ascomicetos/fisiología , Ciclopropanos/administración & dosificación , Etilenos/biosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Prunus persica/fisiología , Etilenos/administración & dosificación , Flores/microbiología , Flores/fisiología , Prunus persica/microbiología
13.
Hortic Res ; 7: 167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082973

RESUMEN

Infections by the fungus Monilinia laxa, the main cause of brown rot in Europe, result in considerable losses of stone fruit. Herein, we present a comprehensive transcriptomic approach to unravel strategies deployed by nectarine fruit and M. laxa during their interaction. We used M. laxa-inoculated immature and mature fruit, which was resistant and susceptible to brown rot, respectively, to perform a dual RNA-Seq analysis. In immature fruit, host responses, pathogen biomass, and pathogen transcriptional activity peaked at 14-24 h post inoculation (hpi), at which point M. laxa appeared to switch its transcriptional response to either quiescence or death. Mature fruit experienced an exponential increase in host and pathogen activity beginning at 6 hpi. Functional analyses in both host and pathogen highlighted differences in stage-dependent strategies. For example, in immature fruit, M. laxa unsuccessfully employed carbohydrate-active enzymes (CAZymes) for penetration, which the fruit was able to combat with tightly regulated hormone responses and an oxidative burst that challenged the pathogen's survival at later time points. In contrast, in mature fruit, M. laxa was more dependent on proteolytic effectors than CAZymes, and was able to invest in filamentous growth early during the interaction. Hormone analyses of mature fruit infected with M. laxa indicated that, while jasmonic acid activity was likely useful for defense, high ethylene activity may have promoted susceptibility through the induction of ripening processes. Lastly, we identified M. laxa genes that were highly induced in both quiescent and active infections and may serve as targets for control of brown rot.

14.
Redox Biol ; 24: 101229, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31153040

RESUMEN

Yeast Sir2 is an NAD-dependent histone deacetylase related to oxidative stress and aging. In a previous study, we showed that Sir2 is regulated by S-glutathionylation of key cysteine residues located at the catalytic domain. Mutation of these residues results in strains with increased resistance to disulfide stress. In the present study, these mutant cells were highly resistant to acetic acid and had an increased chronological life span. Mutant cells had increased acetyl-CoA synthetase activity, which converts acetic acid generated by yeast metabolism to acetyl.CoA. This could explain the acetic acid resistance and lower levels of this toxic acid in the extracellular media during aging. Increased acetyl-CoA levels would raise lipid droplets, a source of energy during aging, and fuel glyoxylate-dependent gluconeogenesis. The key enzyme of this pathway, phosphoenolpyruvate carboxykinase (Pck1), showed increased activity in these Sir2 mutant cells during aging. Sir2 activity decreased when cells shifted to the diauxic phase in the mutant strains, compared to the WT strain. Since Pck1 is inactivated through Sir2-dependent deacetylation, the decline in Sir2 activity explained the rise in Pck1 activity. As a consequence, storage of sugars such as trehalose would increase. We conclude that extended longevity observed in the mutants was a combination of increased lipid droplets and trehalose, and decreased acetic acid in the extracellular media. These results offer a deeper understanding of the redox regulation of Sir2 in acetic acid resistance, which is relevant in some food and industrial biotechnology and also in the metabolism associated to calorie restriction, aging and pathologies such as diabetes.


Asunto(s)
Ácido Acético/metabolismo , Adaptación Biológica , Oxidación-Reducción , Saccharomyces cerevisiae/fisiología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Ácido Acético/farmacología , Tolerancia a Medicamentos , Silenciador del Gen , Redes y Vías Metabólicas , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética
15.
Plant Physiol Biochem ; 144: 324-333, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31606717

RESUMEN

Controversy exists on whether ethylene is involved in determining fruit resistance or susceptibility against biotic stress. In this work, the hypothesis that ethylene biosynthesis in peaches at different phenological stages may be modulated by Monilinia spp. was tested. To achieve this, at 49 and 126 d after full bloom (DAFB), ethylene biosynthesis of healthy and infected 'Merryl O'Henry' peaches with three strains of Monilinia spp. (M. fructicola (CPMC6) and M. laxa (CPML11 and ML8L) that differ in terms of aggressiveness) was analysed at the biochemical and molecular level along the course of infection in fruit stored at 20 °C. At 49 DAFB, results evidenced that infected fruit showed inhibition of ethylene production in comparison with non-inoculated fruit, suggesting that the three Monilinia strains were somehow suppressing ethylene biosynthesis to modify fruit defences to successfully infect the host. On the contrary, at 126 DAFB ethylene production increased concomitantly with brown rot spread, and values for non-inoculated fruit were almost undetectable throughout storage at 20 °C. The expression of several target genes involved in the ethylene biosynthetic pathway confirmed that they were differentially expressed upon Monilinia infection, pointing to a strain-dependent regulation. Notably, Prunus persica 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) (PpACS) family was the most over-expressed over time, demonstrating a positive ethylene regulation, especially at 126 DAFB. At this phenological stage it was demonstrated the ability of Monilinia spp. to alter ethylene biosynthesis through PpACS1 and benefit from the consequences of an ethylene burst likely on cell wall softening. Overall, our results put forward that infection not only among different strains but also at each stage is achieved by different mechanisms, with ethylene being a key factor in determining peach resistance or susceptibility to brown rot.


Asunto(s)
Ascomicetos/patogenicidad , Etilenos/metabolismo , Enfermedades de las Plantas/microbiología , Prunus persica/metabolismo , Prunus persica/microbiología , Aminoácido Oxidorreductasas/metabolismo , Interacciones Huésped-Patógeno
16.
Plant Physiol Biochem ; 120: 132-143, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29028545

RESUMEN

The role of ethylene on inducing plant resistance or susceptibility to certain fungal pathogens clearly depends on the plant pathogen interaction with little or no-information available focused on the apple-Penicillium interaction. Taken advantage that Penicillium expansum is the compatible pathogen and P. digitatum is the non-host of apples, the present study aimed at deciphering how each Penicillium spp. could interfere in the fruit ethylene biosynthesis at the biochemical and molecular level. The infection capacity and different aspects related to the ethylene biosynthesis were conducted at different times post-inoculation. The results show that the fruit ethylene biosynthesis was differently altered during the P. expansum infection than in response to other biotic (non-host pathogen P. digitatum) or abiotic stresses (wounding). The first symptoms of the disease due to P. expansum were visible before the initiation of the fruit ethylene climacteric burst. Indeed, the ethylene climacteric burst was reduced in response to P. expansum concomitant to an important induction of MdACO3 gene expression and an inhibition (ca. 3-fold) and overexpression (ca. 2-fold) of ACO (1-Aminocyclopropane-1-carboxylic acid oxidase) and ACS (1-Aminocyclopropane-1-carboxylic acid synthase) enzyme activities, indicating a putative role of MdACO3 in the P. expansum-apple interaction which may, in turn, be related to System-1 ethylene biosynthesis. System-1 is auto-inhibited by ethylene and is characteristic of non-climateric or pre-climacteric fruit. Accordingly, we hypothesise that P. expansum may 'manipulate' the endogenous ethylene biosynthesis in apples, leading to the circumvention or suppression of effective defences hence facilitating its colonization.


Asunto(s)
Etilenos/biosíntesis , Frutas , Malus , Penicillium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Frutas/metabolismo , Frutas/microbiología , Malus/metabolismo , Malus/microbiología
17.
Free Radic Biol Med ; 96: 45-56, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27085841

RESUMEN

The regulatory mechanisms of yeast Sir2, the founding member of the sirtuin family involved in oxidative stress and aging, are unknown. Redox signaling controls many cellular functions, especially under stress situations, with dithiol glutaredoxins (Grxs) playing an important role. However, monothiol Grxs are not considered to have major oxidoreductase activity. The present study investigated the redox regulation of yeast Sir2, together with the role and physiological impact of monothiol Grx3/4 as Sir2 thiol-reductases upon stress. S-glutathionylation of Sir2 upon disulfide stress was demonstrated both in vitro and in vivo, and decreased Sir2 deacetylase activity. Physiological levels of nuclear Grx3/4 can reverse the observed post-translational modification. Grx3/4 interacted with Sir2 and reduced it after stress, thereby restoring telomeric silencing activity. Using site-directed mutagenesis, key cysteine residues at the catalytic domain of Sir2 were identified as a target of S-glutathionylation. Mutation of these residues resulted in cells with increased resistance to disulfide stress. We provide new mechanistic insights into Grx3/4 regulation of Sir2 by S-deglutathionylation to increase cell resistance to stress. This finding offers news perspectives on monothiol Grxs in redox signaling, describing Sir2 as a physiological substrate regulated by S-glutathionylation. These results might have a relevant role in understanding aging and age-related diseases.


Asunto(s)
Glutarredoxinas/genética , Glutatión/metabolismo , Estrés Oxidativo/genética , Oxidorreductasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Envejecimiento/genética , Envejecimiento/patología , Secuencia de Aminoácidos , Cisteína/genética , Disulfuros/toxicidad , Glutarredoxinas/metabolismo , Glutatión/genética , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxidorreductasas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Estrés Fisiológico/genética
18.
Biofactors ; 38(3): 173-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22473822

RESUMEN

Huntington disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene, affecting initially the striatum and progressively the cortex. Oxidative stress, and consequent protein oxidation, has been described as important to disease progression. This review focuses on recent advances in the field, with a particular emphasis on the identified target proteins and the role that their oxidation has or might have in the pathophysiology of HD. Oxidation and the resulting inactivation and/or degradation of important proteins can explain the impairment of several metabolic pathways in HD. Oxidation of enzymes involved in ATP synthesis can account for the energy deficiency observed. Impairment of protein folding and degradation can be due to oxidation of several heat shock proteins and Valosin-containing protein. Oxidation of two enzymes involved in the vitamin B6 metabolism could result in decreased availability of pyridoxal phosphate, which is a necessary cofactor in transaminations, the kynurenine pathway and the synthesis of glutathione, GABA, dopamine and serotonin, all of which have a key role in HD pathology. In addition, protein oxidation often contributes to oxidative stress, aggravating the molecular damage inside the cell.


Asunto(s)
Enfermedad de Huntington/metabolismo , Adenosina Trifosfatasas/metabolismo , Amidohidrolasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dopamina/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Enfermedad de Huntington/genética , Mutación , Oxidación-Reducción , Estrés Oxidativo , Pliegue de Proteína , Proteína que Contiene Valosina , Vitamina B 6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA