Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 49(9): 2409-2412, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691731

RESUMEN

We present a distributed optical fiber sensor based on a hybrid Brillouin optical frequency/correlation-domain analysis (BOFDA/BOCDA) configuration for both static and dynamic strain measurements. Distributed static strain (or temperature) measurements are realized using the conventional BOFDA method, i.e., acquiring the baseband transfer function of the fiber through a vector network analyzer (VNA). With little modifications, the same setup can perform dynamic, position-selective measurements synthesizing a correlation peak through a frequency modulation of the laser source while operating the VNA at a single modulation frequency. Experimental tests, carried out at a sampling frequency up to 40 Hz and a spatial resolution of ≈5 cm, demonstrate the validity of the proposed approach.

2.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38610588

RESUMEN

In this paper, we propose and demonstrate a network analysis optical frequency domain reflectometer (NA-OFDR) for distributed temperature measurements at high spatial (down to ≈3 cm) and temperature resolution. The system makes use of a frequency-stepped, continuous-wave (cw) laser whose output light is modulated using a vector network analyzer. The latter is also used to demodulate the amplitude of the beat signal formed by coherently mixing the Rayleigh backscattered light with a local oscillator. The system is capable of attaining high measurand resolution (≈50 mK at 3-cm spatial resolution) thanks to the high sensitivity of coherent Rayleigh scattering to temperature. Furthermore, unlike the conventional optical-frequency domain reflectometry (OFDR), the proposed system does not rely on the use of a tunable laser and therefore is less prone to limitations related to the laser coherence or sweep nonlinearity. Two configurations are analyzed, both numerically and experimentally, based on either a double-sideband or single-sideband modulated probe light. The results confirm the validity of the proposed approach.

3.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36772139

RESUMEN

In this paper, we propose and demonstrate a damage detection technique based on the automatic classification of the Lamb wave signals acquired on a metallic plate. In the reported experiments, Lamb waves are excited in an aluminum plate through a piezoelectric transducer glued onto the monitored structure. The response of the monitored structure is detected through a high-resolution phase-sensitive optical time-domain reflectometer (ϕ-OTDR). The presence and location of a small perturbation, induced by placing a lumped mass of 5 g on the plate, are determined by processing the optical fiber sensor data through support vector machine (SVM) classifiers trained with experimental data. The results show that the proposed method takes full advantage of the multipoint sensing nature of the ϕ-OTDR technology, resulting in accurate damage detection and localization.

4.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36015722

RESUMEN

In this paper, the use of a phase-sensitive optical time-domain reflectometry (ϕ-OTDR) sensor for the detection of the Lamb waves excited by a piezoelectric transducer in an aluminum plate, is investigated. The system is shown to detect and resolve the Lamb wave in distinct regions of the plate, opening the possibility of realizing structural health monitoring (SHM) and damage detection using a single optical fiber attached to the structure. The system also reveals the variations in the Lamb wave resulting from a change in the load conditions of the plate. The same optical fiber used to detect the Lamb waves has also been employed to realize distributed strain measurements using a Brillouin scattering system. The method can be potentially used to replace conventional SHM sensors such as strain gauges and PZT transducers, with the advantage of offering several sensing points using a single fiber.


Asunto(s)
Fibras Ópticas , Transductores
5.
Sci Rep ; 13(1): 10468, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380718

RESUMEN

We demonstrate the possibility to modify the Brillouin scattering properties of a microstructured pure-silica core optical fiber, by infiltrating a liquid inside its holes. In particular, we show that the dependence of the Brillouin frequency shift (BFS) on the temperature can be reduced by infiltration, owing to the large negative thermo-optic coefficient of the liquid. Infiltrating a chloroform-acetonitrile mixture with a refractive index of 1.365 inside the holes of a suspended-core fiber with a core diameter of 3 µm, the BFS temperature sensing coefficient is reduced by ≈ 21%, while the strain sensitivity remains almost unaltered. Besides tuning the temperature sensing coefficient, the proposed platform could find other applications in Brillouin sensing, such as distributed electrical and magnetic measurements, or enhanced Brillouin gain in fibers infiltrated with high nonlinear optical media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA