RESUMEN
There is debate in the field of oncolytic virus (OV) therapy, whether a single viral dose, or multiple administrations, is better for tumor control. Using intravital microscopy, we describe the fate of vesicular stomatitis virus (VSV) delivered systemically as a first or a second dose. Following primary administration, VSV binds to the endothelium, initiates tumor infection and activates a proinflammatory response. This initial OV dose induces neutrophil migration into the tumor and limits viral replication. OV administered as a second dose fails to infect the tumor and is captured by intravascular monocytes. Despite a lack of direct infection, this second viral dose, in a monocyte-dependent fashion, enhances and sustains infection by the first viral dose, promotes CD8 T cell recruitment, delays tumor growth and improves survival in multi-dosing OV therapy. Thus, repeated VSV dosing engages monocytes to post-condition the tumor microenvironment for improved infection and anticancer T cell responses. Understanding the complex interactions between the subsequent viral doses is crucial for improving the efficiency of OV therapy and virus-based vaccines.
Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Rhabdoviridae , Animales , Ratones , Monocitos , Microambiente TumoralRESUMEN
OBJECTIVE: To conduct a scoping review of the literature on apathy in Parkinson's disease (PD), to better understand how apathy in Parkinson's disease is diagnosed, treated and managed. METHODS: MEDLINE, Embase, PsycINFO, CINAHL, Cochrane Central Register of Control Trials and Cochrane Database of Systematic Reviews were searched to 17 May 2017. An updated review was run from 17 May 2017 to 28 January 2019. The grey literature was searched using the CADTH Grey Matters tool. Original peer-reviewed research was included if it included individuals with PD and apathy. Non-original data was only included if it was in the form of meta-analysis. All information regarding diagnosis, treatment and management of PD was extracted. Citation screening and extraction were performed in duplicate. RESULTS: From 11 375 citations, 362 articles were included in the final review. The majority of included studies focussed on prevalence, with few studies examining treatment. Twenty screening tools for apathy were identified. Fifty per cent of treatment studies were randomised control trials (RCTs). RCTs applied treatment methods including: exercise, mindfulness, rotigotine (Neupro) transdermal patch and rivastigmine (Exelon). CONCLUSIONS: This review identified a large body of literature describing current knowledge on diagnosing, treating and managing apathy in PD. Future research should aim to detect an ideal screening tool for apathy in PD, to identify the best treatment options for apathy and the variety of comorbidities it may present with and finally aim to better understand postoperative apathy in those with deep brain stimulation.
Asunto(s)
Apatía , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Revisiones Sistemáticas como Asunto , Parche TransdérmicoRESUMEN
Oncolytic virus (OV) therapy is an emerging cancer treatment that uses replicating viruses to infect and kill tumor cells and incite anticancer immunity. While the approach shows promise, it currently fails most patients, indicating strategies to improve OV activity are needed. Developing these will require greater understanding of OV biology, particularly in the context of OV delivery and clearance, the infection process within a complex tumor microenvironment, and the modulation of anticancer immunity. To help achieve this, we have established a technique for high-resolution 4D imaging of OV-host interactions within intact tissues of live mice using intravital microscopy (IVM). We show that oncolytic vesicular stomatitis virus (VSV) directly labeled with Alexa Fluor dyes is easily visualized by single- or multiphoton microscopy while retaining bioactivity in vivo. The addition of fluorophore-tagged antibodies and genetically encoded reporter proteins to image target cells and the virus infection enables real-time imaging of dynamic interactions between VSV and host cells in blood, tumor, and visceral organs of live mice. The method has sufficient in vivo resolution to observe leukocytes in blood binding to and transporting VSV particles, foci of VSV infection spreading through a tumor, and antigen-presenting cells in the spleen interacting with and being infected by VSV. Visualizing OV-host interactions by IVM represents a powerful new tool for studying OV therapy.