Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499418

RESUMEN

Mycothiol (MSH), the major cellular thiol in Mycobacterium tuberculosis (Mtb), plays an essential role in the resistance of Mtb to various antibiotics and oxidative stresses. MshC catalyzes the ATP-dependent ligation of 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol (GlcN-Ins) with l-cysteine (l-Cys) to form l-Cys-GlcN-Ins, the penultimate step in MSH biosynthesis. The inhibition of MshC is lethal to Mtb. In the present study, five new cysteinyl-sulfonamides were synthesized, and their binding affinity with MshC was evaluated using a thermal shift assay. Two of them bind the target with EC50 values of 219 and 231 µM. Crystal structures of full-length MshC in complex with these two compounds showed that they were bound in the catalytic site of MshC, inducing dramatic conformational changes of the catalytic site compared to the apo form. In particular, the observed closure of the KMSKS loop was not detected in the published cysteinyl-sulfamoyl adenosine-bound structure, the latter likely due to trypsin treatment. Despite the confirmed binding to MshC, the compounds did not suppress Mtb culture growth, which might be explained by the lack of adequate cellular uptake. Taken together, these novel cysteinyl-sulfonamide MshC inhibitors and newly reported full-length apo and ligand-bound MshC structures provide a promising starting point for the further development of novel anti-tubercular drugs targeting MshC.


Asunto(s)
Ligasas , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Glicopéptidos/química , Inositol/metabolismo , Ligasas/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Sulfonamidas/farmacología
2.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578647

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antiinfecciosos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Antiinfecciosos/química , Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Terapia Molecular Dirigida
3.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360555

RESUMEN

Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Bioensayo/métodos , Simulación por Computador , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirazinamida/química , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica
4.
J Biol Chem ; 294(31): 11863-11875, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31201270

RESUMEN

Only a small portion of human immunodeficiency virus type 1 (HIV-1) particles entering the host cell results in productive infection, emphasizing the importance of identifying the functional virus population. Because integration of viral DNA (vDNA) is required for productive infection, efficient vDNA detection is crucial. Here, we use click chemistry to label viruses with integrase coupled to eGFP (HIVIN-eGFP) and visualize vDNA. Because click labeling with 5-ethynyl-2'-deoxyuridine is hampered by intense background staining of the host nucleus, we opted for developing HIV-1 reverse transcriptase (RT)-specific 2'-deoxynucleoside analogs that contain a clickable triple bond. We synthesized seven propargylated 2'-deoxynucleosides and tested them for lack of cytotoxicity and viral replication inhibition, RT-specific primer extension and incorporation kinetics in vitro, and the capacity to stain HIV-1 DNA. The triphosphate of analog A5 was specifically incorporated by HIV-1 RT, but no vDNA staining was detected during infection. Analog A3 was incorporated in vitro by HIV-1 RT and human DNA polymerase γ and did enable specific HIV-1 DNA labeling. Additionally, A3 supported mitochondria-specific DNA labeling, in line with the in vitro findings. After obtaining proof-of-principle of RT-specific DNA labeling reported here, further chemical refinement is necessary to develop even more efficient HIV-1 DNA labels without background staining of the nucleus or mitochondria.


Asunto(s)
Química Clic , Desoxiuridina/análogos & derivados , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Replicación Viral , Alquinos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cartilla de ADN/metabolismo , Desoxiuridina/metabolismo , Desoxiuridina/toxicidad , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/genética , Humanos , Cinética , Microscopía Confocal , ARN Viral/química , ARN Viral/metabolismo
5.
Bioorg Med Chem ; 28(17): 115645, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32773091

RESUMEN

Despite of proven efficacy and well tolerability, albomycin is not used clinically due to scarcity of material. Several attempts have been made to increase the production of albomycin by chemical or biochemical methods. In the current study, we have synthesized the active moiety of albomycin δ1 and investigated its binding mode to its molecular target seryl-trna synthetase (SerRS). In addition, isoleucyl and aspartyl congeners were prepared to investigate whether the albomycin scaffold can be extrapolated to target other aminoacyl-tRNA synthetases (aaRSs) from both class I and class II aaRSs, respectively. The synthesized analogues were evaluated for their ability to inhibit the corresponding aaRSs by an in vitro aminoacylation experiment using purified enzymes. It was observed that the diastereomer having the 5'S, 6'R-configuration (nucleoside numbering) as observed in the crystal structure, exhibits excellent inhibitory activity in contrast to poor activity of its companion 5'R,6'S-diasteromer obtained as byproduct during synthesis. Moreover, the albomycin core scaffold seems well tolerated for class II aaRSs inhibition compared with class I aaRSs. To understand this bias, we studied X-ray crystal structures of SerRS in complex with the albomycin δ1 core structure 14a, and AspRS in complex with compound 16a. Structural analysis clearly showed that diastereomer selectivity is attributed to the steric restraints of the active site of SerRS and AspRS.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Ferricromo/análogos & derivados , Serina-ARNt Ligasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ferricromo/síntesis química , Ferricromo/química , Ferricromo/metabolismo , Ligandos , Simulación de Dinámica Molecular , Serina-ARNt Ligasa/antagonistas & inhibidores , Trypanosoma brucei brucei/enzimología
6.
Bioorg Med Chem ; 28(15): 115580, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32631562

RESUMEN

Antimicrobial resistance is considered as one of the major threats for the near future as the lack of effective treatments for various infections would cause more deaths than cancer by 2050. The development of new antibacterial drugs is considered as one of the cornerstones to tackle this problem. Aminoacyl-tRNA synthetases (aaRSs) are regarded as good targets to establish new therapies. Apart from being essential for cell viability, they are clinically validated. Indeed, mupirocin, an isoleucyl-tRNA synthetase (IleRS) inhibitor, is already commercially available as a topical treatment for MRSA infections. Unfortunately, resistance developed soon after its introduction on the market, hampering its clinical use. Therefore, there is an urgent need for new cellular targets or improved therapies. Follow-up research by Cubist Pharmaceuticals led to a series of selective and in vivo active aminoacyl-sulfamoyl aryltetrazole inhibitors targeting IleRS (e.g. CB 168). Here, we describe the synthesis of new IleRS and TyrRS inhibitors based on the Cubist Pharmaceuticals compounds, whereby the central ribose was substituted for a tetrahydropyran ring. Various linkers were evaluated connecting the six-membered ring with the base-mimicking part of the synthesized analogues. Out of eight novel molecules, a three-atom spacer to the phenyltriazole moiety, which was established using azide-alkyne click chemistry, appeared to be the optimized linker to inhibit IleRS. However, 11 (Ki,app = 88 ± 5.3 nM) and 36a (Ki,app = 114 ± 13.5 nM) did not reach the same level of inhibitory activity as for the known high-affinity natural adenylate-intermediate analogue isoleucyl-sulfamoyl adenosine (IleSA, CB 138; Ki,app = 1.9 ± 4.0 nM) and CB 168, which exhibit a comparable inhibitory activity as the native ligand. Therefore, 11 was docked into the active site of IleRS using a known crystal structure of T. thermophilus in complex with mupirocin. Here, we observed the loss of the crucial 3'- and 4'- hydroxyl group interactions with the target enzyme compared to CB 168 and mupirocin, which we suggest to be the reason for the limited decrease in enzyme affinity. Despite the lack of antibacterial activity, we believe that structurally optimizing these novel analogues via a structure-based approach could ultimately result in aaRS inhibitors which would help to tackle the antibiotic resistance problem.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Isoleucina-ARNt Ligasa/antagonistas & inhibidores , Ácidos Sulfónicos/farmacología , Triazoles/farmacología , Tirosina-ARNt Ligasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Candida/efectos de los fármacos , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Isoleucina-ARNt Ligasa/química , Isoleucina-ARNt Ligasa/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Unión Proteica , Staphylococcus aureus/efectos de los fármacos , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/metabolismo , Thermus thermophilus/enzimología , Triazoles/síntesis química , Triazoles/metabolismo , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo
7.
Molecules ; 25(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081246

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) have become viable targets for the development of antimicrobial agents due to their crucial role in protein translation. A series of six amino acids were coupled to the purine-like 7-amino-5-hydroxymethylbenzimidazole nucleoside analogue following an optimized synthetic pathway. These compounds were designed as aaRS inhibitors and can be considered as 1,3-dideazaadenine analogues carrying a 2-hydroxymethyl substituent. Despite our intentions to obtain N1-glycosylated 4-aminobenzimidazole congeners, resembling the natural purine nucleosides glycosylated at the N9-position, we obtained the N3-glycosylated benzimidazole derivatives as the major products, resembling the respective purine N7-glycosylated nucleosides. A series of X-ray crystal structures of class I and II aaRSs in complex with newly synthesized compounds revealed interesting interactions of these "base-flipped" analogues with their targets. While the exocyclic amine of the flipped base mimics the reciprocal interaction of the N3-purine atom of aminoacyl-sulfamoyl adenosine (aaSA) congeners, the hydroxymethyl substituent of the flipped base apparently loses part of the standard interactions of the adenine N1 and the N6-amine as seen with aaSA analogues. Upon the evaluation of the inhibitory potency of the newly obtained analogues, nanomolar inhibitory activities were noted for the leucine and isoleucine analogues targeting class I aaRS enzymes, while rather weak inhibitory activity against the corresponding class II aaRSs was observed. This class bias could be further explained by detailed structural analysis.


Asunto(s)
Aminoacil-ARNt Sintetasas/ultraestructura , Bencimidazoles/química , Inhibidores Enzimáticos/síntesis química , Ribonucleósidos/química , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/química , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/patogenicidad , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad
8.
Molecules ; 24(3)2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696094

RESUMEN

In vivo imaging of biological processes is an important asset of modern cell biology. Selectively reacting fluorophores herein are an important tool and click chemistry reactions take a large share in these events. 5-Ethynyl-2'-deoxyuridine (EdU) is well known for visualizing DNA replication, but does not show any selectivity for incorporation into DNA. Striving for specific visualization of virus replication, in particular HIV replication, a series of propargylated purine deoxynucleosides were prepared aiming for selective incorporation by HIV reverse transcriptase (RT). We here report on the synthesis and preliminary biological effects (cellular toxicity, HIV inhibitory effects, and feasibility of the click reaction) of these nucleoside analogues.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Nucleósidos de Purina , Línea Celular , Supervivencia Celular , Química Clic , Colorantes Fluorescentes/química , Expresión Génica , Genes Reporteros , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Estructura Molecular , Imagen Óptica/métodos , Nucleósidos de Purina/química , Replicación Viral/efectos de los fármacos
9.
Mol Pharm ; 14(5): 1726-1741, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28363028

RESUMEN

We recently found that indomethacin (IMC) can effectively act as a powerful crystallization inhibitor for polyethylene glycol 6000 (PEG) despite the fact that the absence of interactions between the drug and the carrier in the solid state was reported in the literature. However, in the present study, we investigate the possibility of drug-carrier interactions in the liquid state to explain the polymer crystallization inhibition effect of IMC. We also aim to discover other potential PEG crystallization inhibitors. Drug-carrier interactions in both liquid and solid state are characterized by variable temperature Fourier transform infrared spectroscopy (FTIR) and cross-polarization magic angle spinning 13C nuclear magnetic resonance spectroscopy (CP/MAS NMR). In the liquid state, FTIR data show evidence of the breaking of hydrogen bonding between IMC molecules to form interactions of the IMC monomer with PEG. The drug-carrier interactions are disrupted upon storage and polymer crystallization, resulting in segregation of IMC from PEG crystals that can be observed under polarized light microscopy. This process is further confirmed by 13C NMR since in the liquid state, when the IMC/PEG monomer units ratio is below 2:1, IMC signals are undetectable because of the loss of cross-polarization efficiency in the mobile IMC molecules upon attachment to PEG chains via hydrogen bonding. This suggests that each ether oxygen of the PEG unit can form hydrogen bonds with two IMC molecules. The NMR spectrum of IMC shows no change in solid dispersions with PEG upon storage, indicating the absence of interactions in the solid state, hence confirming previous studies. The drug-carrier interactions in the liquid state elucidate the crystallization inhibition effect of IMC on PEG as well as other semicrystalline polymers such as poloxamer and Gelucire. However, hydrogen bonding is a necessary but apparently not a sufficient condition for the polymer crystallization inhibition. Screening of crystallization inhibitors of semicrystalline polymers discovers numerous candidates that exhibit the same behavior as IMC, demonstrating a general pattern of polymer crystallization inhibition rather than a particular case. Furthermore, the crystallization inhibition effect of drugs on PEG is independent of the carrier molecular weight. These mechanistic findings on the formation and disruption of hydrogen bonds in semicrystalline dispersions can be extended to amorphous dispersions and are of significant importance for preparation of solid dispersions with consistent and reproducible physicochemical properties.


Asunto(s)
Indometacina/química , Rastreo Diferencial de Calorimetría , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Polietilenglicoles/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
J Am Chem Soc ; 138(48): 15690-15698, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934031

RESUMEN

Microcin C and related antibiotics are Trojan-horse peptide-adenylates. The peptide part is responsible for facilitated transport inside the sensitive cell, where it gets processed to release a toxic warhead-a nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. Adenylation of peptide precursors is carried out by MccB THIF-type NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented ability to attach a terminal cytidine monophosphate to cognate precursor peptide in cellular and cell free systems. The cytosine moiety undergoes an additional modification-carboxymethylation-that is carried out by the C-terminal domain of MccB and the MccS enzyme that produces carboxy-SAM, which serves as a donor of the carboxymethyl group. We show that microcin C-like compounds carrying terminal cytosines are biologically active and target aspartyl-tRNA synthetase, and that the carboxymethyl group prevents resistance that can occur due to modification of the warhead. The results expand the repertoire of known enzymatic modifications of peptides that can be used to obtain new biological activities while avoiding or limiting bacterial resistance.


Asunto(s)
Antibacterianos/farmacología , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Bacillus amyloliquefaciens/química , Bacteriocinas/farmacología , Inhibidores Enzimáticos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Bacteriocinas/química , Bacteriocinas/aislamiento & purificación , Biología Computacional , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Estructura Molecular
11.
J Org Chem ; 80(10): 5014-22, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25853790

RESUMEN

The synthesis and a preliminary investigation of the base pairing properties of (6' → 4')-linked 1',5'-anhydro-L-ribo-hexitol nucleic acids (α-L-HNA) have herein been reported through the study of a model oligoadenylate system in the mirror image world. Despite its considerable preorganization due to the rigidity of the "all equatorial" pyranyl sugar backbone, α-L-HNA represents a versatile informational biopolymer, in view of its capability to cross-communicate with natural and unnatural complements in both enantiomeric forms. This seems the result of an inherent flexibility of the oligonucleotide system, as witnessed by the singular formation of iso- and heterochiral associations composed of regular, enantiomorphic helical structures. The peculiar properties of α-L-HNA (and most generally of the α-HNA system) provide new elements in our understanding of the structural prerequisites ruling the stereoselectivity of the hybridization processes of nucleic acids.


Asunto(s)
Adenina/síntesis química , Ácidos Nucleicos/síntesis química , Oligonucleótidos/síntesis química , Alcoholes del Azúcar/síntesis química , Adenina/química , Emparejamiento Base , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Oligonucleótidos/química , ARN/química , Estereoisomerismo , Alcoholes del Azúcar/química
12.
Bioorg Med Chem Lett ; 25(7): 1577-9, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25726328

RESUMEN

The antibiotic fosmidomycin (3a) is an inhibitor of the non-mevalonate pathway for isoprenoid biosynthesis. Four analogues in which an acylated sulfonamide group is substituting for its phosphonate moiety have been synthesized in a fruitless effort to preserve one negative charge in order to increase the accompanying affinity for 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the fosmidomycin target enzyme.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Antibacterianos/química , Fosfomicina/análogos & derivados , Sulfonamidas/química , Acilación , Escherichia coli/enzimología , Fosfomicina/química , Estructura Molecular
13.
Org Biomol Chem ; 13(39): 10041-9, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293202

RESUMEN

The synthesis and a preliminary evaluation of the pairing properties of ribo-cyclohexanyl nucleic acids (r-CNA) is herein reported. Incorporation of a single r-CNA nucleotide into natural duplexes did not enhance their stability, while a very high pairing selectivity for RNA was found. As deduced by comparative analysis of Tm and NMR data, a relationship between pairing selectivity and conformational preferences of the "sugar" moiety of r-CNA (and more generally of six-membered nucleic acids) was suggested.


Asunto(s)
Emparejamiento Base , Oligonucleótidos/química , ARN/química , Ribonucleósidos/química , Ribosa/análogos & derivados , Secuencia de Bases , Conformación de Carbohidratos , Conformación de Ácido Nucleico , Estabilidad del ARN
14.
Molecules ; 20(3): 4020-41, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25741897

RESUMEN

In further study of our series of six-membered ring-containing nucleic acids, different 1',3'-di-O-methyl altropyranoside nucleoside analogs (DMANA) were synthesized comprising all four base moieties, adenine, cytosine, uracil and guanine. Following assembly into oligonucleotides (ONs), their affinity for natural oligonucleotides was evaluated by thermal denaturation of the respective duplexes. Data were compared with results obtained previously for both anhydrohexitol (HNAs) and 3'-O-methylated altrohexitol modified ONs (MANAs). We hereby demonstrate that ONs modified with DMANA monomers, unlike some of our previously described analogues with constrained 6-membered hexitol rings, did not improve thermodynamic stability of dsRNA complexes, most probably in view of an energetic penalty when forced in the required 1C4 pairing conformation. Overall, a single incorporation was more or less tolerated or even positive for the adenine congener, but incorporation of a second modification afforded a slight destabilization (except for A), while a fully modified sequence displayed a thermal stability of -0.3 °C per modification. The selectivity of pairing remained very high, and the new modification upon incorporation into a DNA strand, strongly destabilized the corresponding DNA duplexes. Unfortunately, this new modification does not bring any advantage to be further evaluated for antisense or siRNA applications.


Asunto(s)
Hibridación de Ácido Nucleico/genética , Ácidos Nucleicos/química , Adenina/química , Citosina/química , ADN/química , ADN/genética , Guanina/química , Desnaturalización de Ácido Nucleico/genética , Oligonucleótidos/química , ARN Interferente Pequeño/genética , Alcoholes del Azúcar/química , Termodinámica , Uracilo/química
15.
J Bacteriol ; 196(19): 3377-85, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25002546

RESUMEN

Peptide-nucleotide antibiotic microcin C (McC) is produced by some Escherichia coli strains. Inside a sensitive cell, McC is processed, releasing a nonhydrolyzable analog of aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. The product of mccE, a gene from the plasmid-borne McC biosynthetic cluster, acetylates processed McC, converting it into a nontoxic compound. MccE is homologous to chromosomally encoded acetyltransferases RimI, RimJ, and RimL, which acetylate, correspondingly, the N termini of ribosomal proteins S18, S5, and L12. Here, we show that E. coli RimL, but not other Rim acetyltransferases, provides a basal level of resistance to McC and various toxic nonhydrolyzable aminoacyl adenylates. RimL acts by acetylating processed McC, which along with ribosomal protein L12 should be considered a natural RimL substrate. When overproduced, RimL also makes cells resistant to albomycin, an antibiotic that upon intracellular processing gives rise to a seryl-thioribosyl pyrimidine that targets seryl-tRNA synthetase. We further show that E. coli YhhY, a protein related to Rim acetyltransferases but without a known function, is also able to detoxify several nonhydrolyzable aminoacyl adenylates but not processed McC. We propose that RimL and YhhY protect bacteria from various toxic aminoacyl nucleotides, either exogenous or those generated inside the cell during normal metabolism.


Asunto(s)
Acetiltransferasas/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/toxicidad , Ácido Aspártico/análogos & derivados , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Iniciación de la Cadena Peptídica Traduccional , Acetiltransferasas/genética , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Ácido Aspártico/toxicidad , Bacteriocinas/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos
16.
Bioorg Med Chem ; 22(10): 2875-86, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24746466

RESUMEN

Aminoacyl-sulfamoyl adenosines are well-known nanomolar inhibitors of the corresponding prokaryotic and eukaryotic tRNA synthetases in vitro. Inspired by the aryl-tetrazole containing compounds of Cubist Pharmaceuticals and the modified base as found in the natural antibiotic albomycin, the selectivity issue of the sulfamoylated adenosines prompted us to investigate the pharmacophoric importance of the adenine base. We therefore synthesized and evaluated several isoleucyl-sulfamoyl nucleoside analogues with either uracil, cytosine, hypoxanthine, guanine, 1,3-dideaza-adenine (benzimidazole) or 4-nitro-benzimidazole as the heterocyclic base. Based on the structure and antibacterial activity of microcin C, we also prepared their hexapeptidyl conjugates in an effort to improve their uptake potential. We further compared their antibacterial activity with the parent isoleucyl-sulfamoyl adenosine (Ile-SA), both in in vitro and in cellular assays. Surprisingly, the strongest in vitro inhibition was found for the uracil containing analogue 16f. Unfortunately, only very weak growth inhibitory properties were found as of low uptake. The results are discussed in the light of previous literature findings.


Asunto(s)
Adenosina/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Adenosina/análogos & derivados , Adenosina/química , Antibacterianos/síntesis química , Relación Dosis-Respuesta a Droga , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Relación Estructura-Actividad
17.
Molecules ; 18(7): 8524-34, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23873390

RESUMEN

Benzhydryl protection of primary and secondary alcohols has been reported previously via reaction with metal alcoholates. Our aim was to find generally useful and very mild conditions for the alcoholic protection and deprotection of nucleosides with the diphenylmethyl group. This was accomplished for some pyrimidine nucleosides using PdCl2 as the transition metal catalyst, and with optimization yields of 70-90% have been achieved. A lack of solubility of other nucleosides hampers its more general use.


Asunto(s)
Alcoholes/química , Catálisis , Nucleósidos de Pirimidina/química , Compuestos de Bencidrilo/química , Paladio/química
18.
Chembiochem ; 13(13): 1959-69, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22847961

RESUMEN

In 1998, Cubist Pharmaceuticals patented a series of aminoacyl tRNA synthetase (aaRS) inhibitors based on aminoacyl sulfamoyladenosines (aaSAs), in which the adenine was substituted by aryl-tetrazole moieties linked to the ribose fragment by a two-carbon spacer. Although potent and specific inhibitors of bacterial IleRS, these compounds did not prove successful in vivo due to low cell permeability and strong binding to serum albumin. In this work, we attempted to improve these compounds by combining them with microcin C (McC) or albomycin (i.e., siderophore-drug conjugate (SDC)) transport modules. We found that aryl-tetrazole variants of McC and albomycin still lacked antibacterial activity. However, these compounds were readily processed by E. coli aminopeptidases with the release of toxic aaRS inhibitors. Hence, the lack of activity in whole-cell assays was due to an inability of the new compounds to be taken up by the cells, thus indicating that the nucleotide moieties of McC and albomycin strongly contribute to facilitated transport of these compounds inside the cell.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antibacterianos/farmacología , Bacterias/enzimología , Bacteriocinas/farmacología , Aminoacil-ARNt Sintetasas/metabolismo , Antibacterianos/química , Antibacterianos/farmacocinética , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Bacteriocinas/química , Bacteriocinas/farmacocinética , Diseño de Fármacos , Ferricromo/análogos & derivados , Ferricromo/química , Ferricromo/farmacocinética , Ferricromo/farmacología , Humanos , Tetrazoles/química , Tetrazoles/farmacocinética , Tetrazoles/farmacología
19.
Mol Divers ; 16(4): 825-37, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23054535

RESUMEN

A series of 3'-O-methylated-d-altrohexitol nucleoside analogs (MANA) was synthesized comprising all four base moieties, adenine, cytosine, uracil, and guanine. These monomers were incorporated into oligonucleotides (ONs) by automated solid phase synthesis and the thermal and thermodynamic stability of all new modified constructs were evaluated. Data were compared with results obtained for both anhydrohexitol (HNAs) and 3'-O-altrohexitol-modified ONs (ANAs). We hereby demonstrate that ONs modified with MANA monomers have an improved thermal and thermodynamic stability compared to RNA, ANA, or HNA containing ONs of which the extent depends on the number of incorporated moieties and their position in the sequence. Thermodynamic analysis afforded comparable or even improved results in comparison with the incorporation of locked nucleic acids. While the specificity of these new synthons is slightly lower compared to mismatches within RNA double strands, it is similar to the discrimination potential of other hexitol modifications (HNA and ANA) which already proved their biologic interest, highlighting the potential of MANA constructs in antisense and in siRNA applications.


Asunto(s)
Hibridación de Ácido Nucleico , Nucleósidos/química , Oligonucleótidos/química , Alcoholes del Azúcar/química , Adenina/química , Citosina/química , Guanina/química , Espectroscopía de Resonancia Magnética , ARN Interferente Pequeño , Análisis de Secuencia de ARN , Técnicas de Síntesis en Fase Sólida/métodos , Termodinámica , Rayos Ultravioleta , Uracilo/química
20.
Commun Biol ; 5(1): 883, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038645

RESUMEN

To correctly aminoacylate tRNALeu, leucyl-tRNA synthetase (LeuRS) catalyzes three reactions: activation of leucine by ATP to form leucyl-adenylate (Leu-AMP), transfer of this amino acid to tRNALeu and post-transfer editing of any mischarged product. Although LeuRS has been well characterized biochemically, detailed structural information is currently only available for the latter two stages of catalysis. We have solved crystal structures for all enzymatic states of Neisseria gonorrhoeae LeuRS during Leu-AMP formation. These show a cycle of dramatic conformational changes, involving multiple domains, and correlate with an energetically unfavorable peptide-plane flip observed in the active site of the pre-transition state structure. Biochemical analyses, combined with mutant structural studies, reveal that this backbone distortion acts as a trigger, temporally compartmentalizing the first two catalytic steps. These results unveil the remarkable effect of this small structural alteration on the global dynamics and activity of the enzyme.


Asunto(s)
Leucina-ARNt Ligasa , ARN de Transferencia de Leucina , Catálisis , Dominio Catalítico , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Leucina-ARNt Ligasa/metabolismo , Péptidos , ARN de Transferencia de Leucina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA