Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993866

RESUMEN

Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.


Asunto(s)
Endodermo , Estratos Germinativos , Animales , Blastocisto , Diferenciación Celular , Linaje de la Célula/fisiología , Implantación del Embrión , Embrión de Mamíferos , Ratones
2.
Nature ; 557(7703): 106-111, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720634

RESUMEN

The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.


Asunto(s)
Blastocisto/citología , Células Madre Embrionarias/citología , Animales , Blastocisto/metabolismo , Proteína Morfogenética Ósea 4/farmacología , Autorrenovación de las Células , Ectodermo/citología , Ectodermo/metabolismo , Implantación del Embrión , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor 6 Similar a Kruppel/deficiencia , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo , Masculino , Ratones , Morfogénesis , Proteína Nodal/genética , Proteína Nodal/metabolismo , Proteína Nodal/farmacología , Transcriptoma , Trofoblastos/citología , Trofoblastos/metabolismo , Útero/citología , Útero/metabolismo
3.
J Am Chem Soc ; 144(9): 4057-4070, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35196454

RESUMEN

Supramolecular materials based on the self-assembly of benzene-1,3,5-tricarboxamide (BTA) offer an approach to mimic fibrous self-assembled proteins found in numerous natural systems. Yet, synthetic methods to rapidly build complexity, scalability, and multifunctionality into BTA-based materials are needed. The diversity of BTA structures is often hampered by the limited flexibility of existing desymmetrization routes and the purification of multifunctional BTAs. To alleviate this bottleneck, we have developed a desymmetrization method based on activated ester coupling of a symmetric synthon. We created a small library of activated ester synthons and found that a pentafluorophenol benzene triester (BTE) enabled effective desymmetrization and creation of multifunctional BTAs in good yield with high reaction fidelity. This new methodology enabled the rapid synthesis of a small library of BTA monomers with hydrophobic and/or orthogonal reactive handles and could be extended to create polymeric BTA hydrogelators. These BTA hydrogelators self-assembled in water to create fiber and fibrous sheet-like structures as observed by cryo-TEM, and the identity of the BTA conjugated can tune the mechanical properties of the hydrogel. These hydrogelators display high cytocompatibility for chondrocytes, indicating potential for the use of these systems in 3D cell culture and tissue engineering applications. This newly developed synthetic strategy facilitates the simple and rapid creation of chemically diverse BTA supramolecular polymers, and the newly developed and scalable hydrogels can unlock exploration of BTA based materials in a wider variety of tissue engineering applications.


Asunto(s)
Benceno , Ésteres , Benzamidas/química , Hidrogeles , Polímeros/química
4.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918892

RESUMEN

Various hydrogel systems have been developed as biomaterial inks for bioprinting, including natural and synthetic polymers. However, the available biomaterial inks, which allow printability, cell viability, and user-defined customization, remains limited. Incorporation of biological extracellular matrix materials into tunable synthetic polymers can merge the benefits of both systems towards versatile materials for biofabrication. The aim of this study was to develop novel, cell compatible dual-component biomaterial inks and bioinks based on poly(vinyl alcohol) (PVA) and solubilized decellularized cartilage matrix (SDCM) hydrogels that can be utilized for cartilage bioprinting. In a first approach, PVA was modified with amine groups (PVA-A), and mixed with SDCM. The printability of the PVA-A/SDCM formulations cross-linked by genipin was evaluated. On the second approach, the PVA was functionalized with cis-5-norbornene-endo-2,3-dicarboxylic anhydride (PVA-Nb) to allow an ultrafast light-curing thiol-ene cross-linking. Comprehensive experiments were conducted to evaluate the influence of the SDCM ratio in mechanical properties, water uptake, swelling, cell viability, and printability of the PVA-based formulations. The studies performed with the PVA-A/SDCM formulations cross-linked by genipin showed printability, but poor shape retention due to slow cross-linking kinetics. On the other hand, the PVA-Nb/SDCM showed good printability. The results showed that incorporation of SDCM into PVA-Nb reduces the compression modulus, enhance cell viability, and bioprintability and modulate the swelling ratio of the resulted hydrogels. Results indicated that PVA-Nb hydrogels containing SDCM could be considered as versatile bioinks for cartilage bioprinting.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Alcohol Polivinílico , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Bioimpresión/métodos , Matriz Ósea , Cartílago/química , Bovinos , Técnicas de Cultivo de Célula , Técnicas de Química Sintética , Reactivos de Enlaces Cruzados , Matriz Extracelular , Hidrogeles/química , Resonancia Magnética Nuclear Biomolecular , Alcohol Polivinílico/síntesis química , Alcohol Polivinílico/química
5.
Biomed Microdevices ; 19(4): 81, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28884359

RESUMEN

Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.


Asunto(s)
Citocalasina D/farmacología , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Imagen Óptica , Osteosarcoma , Resistencia al Corte , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Humanos , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Osteosarcoma/metabolismo , Osteosarcoma/patología
6.
Macromol Rapid Commun ; 38(16)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28671747

RESUMEN

The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation.


Asunto(s)
Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Polímeros/química , Propiedades de Superficie
7.
Proc Natl Acad Sci U S A ; 111(38): 13954-9, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25205812

RESUMEN

Actively steering the chondrogenic differentiation of mesenchymal stromal cells (MSCs) into either permanent cartilage or hypertrophic cartilage destined to be replaced by bone has not yet been possible. During limb development, the developing long bone is exposed to a concentration gradient of oxygen, with lower oxygen tension in the region destined to become articular cartilage and higher oxygen tension in transient hypertrophic cartilage. Here, we prove that metabolic programming of MSCs by oxygen tension directs chondrogenesis into either permanent or transient hyaline cartilage. Human MSCs chondrogenically differentiated in vitro under hypoxia (2.5% O2) produced more hyaline cartilage, which expressed typical articular cartilage biomarkers, including established inhibitors of hypertrophic differentiation. In contrast, normoxia (21% O2) prevented the expression of these inhibitors and was associated with increased hypertrophic differentiation. Interestingly, gene network analysis revealed that oxygen tension resulted in metabolic programming of the MSCs directing chondrogenesis into articular- or epiphyseal cartilage-like tissue. This differentiation program resembled the embryological development of these distinct types of hyaline cartilage. Remarkably, the distinct cartilage phenotypes were preserved upon implantation in mice. Hypoxia-preconditioned implants remained cartilaginous, whereas normoxia-preconditioned implants readily underwent calcification, vascular invasion, and subsequent endochondral ossification. In conclusion, metabolic programming of MSCs by oxygen tension provides a simple yet effective mechanism by which to direct the chondrogenic differentiation program into either permanent articular-like cartilage or hypertrophic cartilage that is destined to become endochondral bone.


Asunto(s)
Diferenciación Celular , Condrogénesis , Cartílago Hialino/metabolismo , Células Madre Mesenquimatosas/metabolismo , Oxígeno/metabolismo , Animales , Hipoxia de la Célula , Células Cultivadas , Humanos , Cartílago Hialino/citología , Células Madre Mesenquimatosas/citología , Ratones
8.
J Mater Sci Mater Med ; 27(3): 54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26787486

RESUMEN

Calcium phosphates (CaPs), extensively used synthetic bone graft substitutes, are often combined with other materials with the aim to overcome issues related to poor mechanical properties of most CaP ceramics. Thin ceramic coatings on metallic implants and polymer-ceramic composites are examples of such hybrid materials. Both the properties of the CaP used and the method of incorporation into a hybrid structure are determinant for the bioactivity of the final construct. In the present study, a monolithic composite comprising nano-sized CaP and poly(lactic acid) (PLA) and a CaP-coated PLA were comparatively investigated for their ability to support proliferation and osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells (hMSCs). Both, the PLA/CaP composite, produced using physical mixing and extrusion and CaP-coated PLA, resulting from a biomimetic coating process at near-physiological conditions, supported proliferation of hMSCs with highest rates at PLA/CaP composite. Enzymatic alkaline phosphatase activity as well as the mRNA expression of bone morphogenetic protein-2, osteopontin and osteocalcin were higher on the composite and coated polymer as compared to the PLA control, while no significant differences were observed between the two methods of combining CaP and PLA. The results of this study confirmed the importance of CaP in osteogenic differentiation while the exact properties and the method of incorporation into the hybrid material played a less prominent role.


Asunto(s)
Fosfatos de Calcio/química , Diferenciación Celular/fisiología , Ácido Láctico/química , Células Madre Mesenquimatosas/fisiología , Osteogénesis/fisiología , Polímeros/química , Andamios del Tejido/química , Células Cultivadas , Humanos , Poliésteres , Factores de Tiempo
9.
Birth Defects Res C Embryo Today ; 105(1): 34-52, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25777257

RESUMEN

The osteochondral (OC) interface is not only the interface between two tissues, but also the evolution of hard and stiff bone tissue to the softer and viscoelastic articular cartilage covering the joint surface. To generate a smooth transition between two tissues with such differences in many of their characteristics, several gradients are recognizable when moving from the bone side to the joint surface. It is, therefore, necessary to implement such gradients in the design of scaffolds to regenerate the OC interface, so to mimic the anatomical, biological, and physicochemical properties of bone and cartilage as closely as possible. In the past years, several scaffolds were developed for OC regeneration: biphasic, triphasic, and multilayered scaffolds were used to mimic the compartmental nature of this tissue. The structure of these scaffolds presented gradients in mechanical, physicochemical, or biological properties. The use of gradient scaffolds with already differentiated or progenitor cells has been recently proposed. Some of these approaches have also been translated in clinical trials, yet without the expected satisfactory results, thus suggesting that further efforts in the development of constructs, which can lead to a functional regeneration of the OC interface by presenting gradients more closely resembling its native environment, will be needed in the near future. The aim of this review is to analyze the gradients present in the OC interface from the early stage of embryonic life up to the adult organism, and give an overview of the studies, which involved gradient scaffolds for its regeneration.


Asunto(s)
Huesos/fisiología , Cartílago/fisiología , Regeneración Tisular Dirigida/métodos , Articulaciones/fisiología , Morfogénesis/fisiología , Medicina Regenerativa/métodos , Andamios del Tejido/tendencias , Humanos , Medicina Regenerativa/tendencias
10.
J Cell Mol Med ; 19(8): 1836-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25782016

RESUMEN

Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three-dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100-150 µm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose-responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re-associated human islet cells showed an a-typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C-peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell-cell interactions between insuloma and/or primary islet cells.


Asunto(s)
Glucosa/farmacología , Islotes Pancreáticos/citología , Animales , Agregación Celular/efectos de los fármacos , Línea Celular Tumoral , Tamaño de la Célula , Supervivencia Celular , Células Cultivadas , Femenino , Humanos , Insulinoma/patología , Masculino , Ratones SCID , Persona de Mediana Edad , Reproducibilidad de los Resultados
11.
Anal Chem ; 87(7): 3981-8, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25742117

RESUMEN

Mesenchymal stem cells (MSC) have the ability to self-renew and differentiate into multiple cell types valuable for clinical treatment of rheumatic pathologies. To study the chondrogenic potential of MSC and identify the conditions that recreate the native cartilage environment, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) for label-free detection of cell-type- and environmental-condition-specific molecular profiles. We observed that coculture of human MSC and chondrocytes under standard culture conditions leads to improved extracellular matrix (ECM) deposition. In marked contrast, this effect was lost under low oxygen tension. This improved extracellular matrix deposition was associated with a significant decrease in lipids and in particular cholesterol under low oxygen tension as revealed by TOF-SIMS coupled to principal component analysis and discriminant analysis. We furthermore demonstrate that the higher cholesterol levels under normoxia might regulate fibroblast growth factor 1 (FGF-1) gene expression which was previously implemented in increased ECM production in the cocultures. In conclusion, our study shows an unexpected role of lipids as orchestrators of chondrogenesis in response to oxygen tension which is, at least in part, mediated through FGF-1.


Asunto(s)
Diferenciación Celular , Hipoxia/metabolismo , Lípidos/análisis , Lípidos/química , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/citología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Análisis Multivariante , Oxígeno/metabolismo , Oxígeno/farmacología , Espectrometría de Masa de Ion Secundario , Factores de Tiempo
12.
Electrophoresis ; 36(3): 475-84, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25263102

RESUMEN

We present here a screening method based on a microfluidic platform, which can generate four orthogonal and overlapping concentration gradients of soluble compounds over a monolayer of cells, in combination with automated and in situ image analysis, for use in regenerative medicine research. The device includes a square chamber in which cells are grown, and four independent supply channels along the sides of the chamber, which are connected through an array of small diffusion channels. Compounds flown through the supply channels diffuse through diffusion channels into the chamber to create a gradient over the cell culture area. Further, the chamber is connected to two channels intended for introduction of cells and in situ staining. In this study, the dimensions of the different channels were optimized through finite element modeling to yield stable gradients, and two designs were used with gradients spanning 2.9-2.4 µM and 3.4-2.0 µM. Next, overlapping gradients were generated using four rhodamine-derived fluorescent dyes, and imaged using confocal microscopy. Finally, the platform was applied to assess the concentration-dependent response of an osteoblastic cell line exposed to a hypoxia-mimicking molecule phenanthroline, using an in situ fluorescent staining assay in combination with image analysis, applicable to closed microfluidic devices. The on-chip assay yielded results comparable to those observed in conventional culture, where a range of concentrations was tested in independent microwells. In the future, we intend to use this method to complement or replace current research approaches in screening soluble compounds for regenerative medicine, which are often based on one-sample-for-one-experiment principle.


Asunto(s)
Investigación Biomédica/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Medicina Regenerativa/instrumentación , Investigación Biomédica/métodos , Técnicas de Cultivo de Célula/métodos , Hipoxia de la Célula , Línea Celular Tumoral , Diseño de Equipo , Análisis de Elementos Finitos , Colorantes Fluorescentes , Humanos , Procesamiento de Imagen Asistido por Computador , Técnicas Analíticas Microfluídicas/métodos , Fenantrolinas , Medicina Regenerativa/métodos , Rodaminas
13.
Proc Natl Acad Sci U S A ; 109(12): 4413-8, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22388744

RESUMEN

Large bone defects naturally regenerate via a highly vascularized tissue which progressively remodels into cartilage and bone. Current approaches in bone tissue engineering are restricted by delayed vascularization and fail to recapitulate this stepwise differentiation toward bone tissue. Here, we use the morphogen Sonic Hedgehog (Shh) to induce the in vitro organization of an endothelial capillary network in an artificial tissue. We show that endogenous Hedgehog activity regulates angiogenic genes and the formation of vascular lumens. Exogenous Shh further induces the in vitro development of the vasculature (vascular lumen formation, size, distribution). Upon implantation, the in vitro development of the vasculature improves the in vivo perfusion of the artificial tissue and is necessary to contribute to, and enhance, the formation of de novo mature bone tissue. Similar to the regenerating callus, the artificial tissue undergoes intramembranous and endochondral ossification and forms a trabecular-like bone organ including bone-marrow-like cavities. These findings open the door for new strategies to treat large bone defects by closely mimicking natural endochondral bone repair.


Asunto(s)
Huesos/metabolismo , Proteínas Hedgehog/metabolismo , Ingeniería de Tejidos/métodos , Animales , Prótesis Vascular , Células de la Médula Ósea/citología , Diferenciación Celular , Matriz Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Neovascularización Patológica , Osteogénesis , Medicina Regenerativa/métodos , Factores de Tiempo
14.
Proc Natl Acad Sci U S A ; 109(18): 6886-91, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22511716

RESUMEN

Physical forces play a major role in the organization of developing tissues. During vascular development, physical forces originating from a fluid phase or from cells pulling on their environment can alter cellular signaling and the behavior of cells. Here, we observe how tissue deformation spatially modulates angiogenic signals and angiogenesis. Using soft lithographic templates, we assemble three-dimensional, geometric tissues. The tissues contract autonomously, change shape stereotypically and form patterns of vascular structures in regions of high deformations. We show that this emergence correlates with the formation of a long-range gradient of Vascular Endothelial Growth Factor (VEGF) in interstitial cells, the local overexpression of the corresponding receptor VEGF receptor 2 (VEGFR-2) and local differences in endothelial cells proliferation. We suggest that tissue contractility and deformation can induce the formation of gradients of angiogenic microenvironments which could contribute to the long-range patterning of the vascular system.


Asunto(s)
Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Actinas/metabolismo , Secuencia de Bases , Fenómenos Biomecánicos , Técnicas de Cocultivo , Cartilla de ADN/genética , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Miosinas/metabolismo , Neovascularización Fisiológica/genética , Transducción de Señal/fisiología , Ingeniería de Tejidos , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología
15.
J Cell Mol Med ; 18(1): 134-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24237965

RESUMEN

The surface marker profile of mesenchymal stromal cells (MSCs) suggests that they can escape detection by the immune system of an allogeneic host. This could be an optimal strategy for bone regeneration applications, where off-the-shelf cells could be implanted to heal bone defects. However, it is unknown how pre-differentiation of MSCs to an osteogenic lineage, a means of improving bone formation, affects their immunogenicity. Using immunohistological techniques in a rat ectopic implantation model, we demonstrate that allogeneic osteoprogenitors mount a T cell- and B cell-mediated immune response resulting in an absence of in vivo bone formation. Suppression of the host immune response with daily administration of an immunosuppressant, FK506, is effective in preventing the immune attack on the allogeneic osteoprogenitors. In the immunosuppressed environment, the allogeneic osteoprogenitors are capable of generating bone in amounts similar to those of syngeneic cells. However, using osteoprogenitors from one of the allogeneic donors led to newly deposited bone that was attacked by the host immune system, despite the continued administration of the immunosuppressant. This suggests that, although using an immunosuppressant can potentially suppress the immune attack on the allogeneic cells, optimizing the dose of the immunosuppressant may be crucial to ensure bone formation within the allogeneic environment. Overall, allografts comprising osteoprogenitors derived from allogeneic MSCs have the potential to be used in bone regeneration applications.


Asunto(s)
Regeneración Ósea , Terapia de Inmunosupresión , Inmunosupresores/farmacología , Células Madre Mesenquimatosas/inmunología , Tacrolimus/farmacología , Aloinjertos , Animales , Animales no Consanguíneos , Sustitutos de Huesos/química , Huesos/inmunología , Células Cultivadas , Cerámica/química , Supervivencia de Injerto , Hidroxiapatitas/química , Hidroxiapatitas/inmunología , Inmunidad Celular/efectos de los fármacos , Implantes Experimentales , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Desnudos , Ratas , Ratas Endogámicas F344 , Ratas Wistar
16.
J Biol Chem ; 288(24): 17552-8, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23603903

RESUMEN

T cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors are downstream effectors of Wnt/ß-catenin signaling, which has been implicated in the development and progression of osteoarthritis (OA). This study aimed to investigate the role of TCF/LEF transcription factors in human articular chondrocytes. Primary human osteoarthritic cartilage predominantly expressed TCF4 and to a lesser extent, LEF1 and TCF3 mRNA. Overexpression of TCF4, but not of TCF3 or LEF1, induced MMP-1, -3, and -13 expression and generic MMP activity in human chondrocytes. This was due to potentiating NF-κB signaling by a protein-protein interaction between TCF4 and NF-κB p65 activating established NF-κB target genes such as MMPs and IL-6. LEF1 competed with TCF4 for binding to NF-κB p65. IκB-α was able to counteract the effect of TCF4 on NF-κB target gene expression. Finally, we showed that TCF4 mRNA expression was elevated in OA cartilage compared with healthy cartilage and induced chondrocyte apoptosis at least partly through activating caspase 3/7. Our findings suggest that increased TCF4 expression may contribute to cartilage degeneration in OA by augmenting NF-κB signaling.


Asunto(s)
Apoptosis , Condrocitos/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/fisiología , Factor de Transcripción ReIA/metabolismo , Anciano , Anciano de 80 o más Años , Cartílago Articular/patología , Células Cultivadas , Expresión Génica , Células HEK293 , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Metaloproteinasas de la Matriz Secretadas/genética , Metaloproteinasas de la Matriz Secretadas/metabolismo , Persona de Mediana Edad , FN-kappa B/metabolismo , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Regulación hacia Arriba
17.
J Am Chem Soc ; 136(36): 12675-81, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25153343

RESUMEN

A supramolecular strategy is presented for the assembly of growth factors employing His6-tagged single-domain antibodies (VHH). A combination of orthogonal supramolecular interactions of ß-cyclodextrin (ßCD)-adamantyl (Ad) host-guest and N-nitrilotriacetic acid (NTA)-histidine (His) interactions was employed to generate reversible and homogeneous layers of growth factors. A single-domain antibody V(H)H fragment was identified to bind to the human bone morphogenetic protein-6 (hBMP6) growth factor and could be recombinantly expressed in E. coli. The V(H)H fragment was equipped with a C-terminal hexahistidine (His6) tether to facilitate the assembly on ßCD surfaces using a linker that contains an Ad group to bind to the ßCD receptors and an NTA moiety to interact with the His6-tag upon cocomplexation of Ni(2+) ions. After exploring the thermodynamic and kinetic stability of the V(H)H assemblies on ßCD surfaces using a variety of experimental techniques including microcontact printing (µCP), surface plasmon resonance (SPR), microscale thermophoresis (MST), and theoretical models for determining the thermodynamic behavior of the system, hBMP6 was assembled onto the V(H)H-functionalized surfaces. After analyzing the immobilized hBMP6 using immunostaining, the biological activity of hBMP6 was demonstrated in cell differentiation experiments. Early osteogenic differentiation was analyzed in terms of alkaline phosphatase (ALP) activity of KS483-4C3 mouse progenitor cells, and the results indicated that the reversibly immobilized growth factors were functionally delivered to the cells. In conclusion, the supramolecular strategy used here offers the necessary affinity, reversibility, and temporal control to promote biological function of the growth factors that were delivered by this strategy.


Asunto(s)
Proteína Morfogenética Ósea 6/química , Histidina/química , Ácido Nitrilotriacético/química , Anticuerpos de Dominio Único/química , beta-Ciclodextrinas/química , Humanos , Cinética , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie , Termodinámica
18.
Nanomedicine ; 10(7): 1559-69, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24792217

RESUMEN

Interactions between Schwann cells (SCs) and scaffolds are important for tissue development during nerve regeneration, because SCs physiologically assist in directing the growth of regenerating axons. In this study, we prepared electrospun scaffolds combining poly (3-hydroxybutyrate) (PHB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) functionalized with either collagen I, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS), H-Tyr-Ile-Gly-Ser-Arg-NH2 (YIGSR), or H-Arg-Asn-Ile-Ala-Glu-Ile-Ile-Lys-Asp-Ile-OH (p20) neuromimetic peptides to mimic naturally occurring ECM motifs for nerve regeneration. Cells cultured on fibrous mats presenting these biomolecules showed a significant increase in metabolic activity and proliferation while exhibiting unidirectional orientation along the orientation of the fibers. Real-time PCR showed cells cultured on peptide-modified scaffolds had a significantly higher neurotrophin expression compared to those on untreated nanofibers. Our study suggests that biofunctionalized aligned PHB/PHBV nanofibrous scaffolds may elicit essential cues for SCs activity and could serve as a potential scaffold for nerve regeneration. From the clinical editor: Nanotechnology-based functionalized scaffolds represent one of the most promising approaches in peripheral nerve recovery, as well as spinal cord recovery. In this study, bio-functionalized and aligned PHB/PHBV nanofibrous scaffolds were found to elicit essential cues for Schwann cell activity, therefore could serve as a potential scaffold for nerve regeneration.


Asunto(s)
Nanofibras , Péptidos/química , Polihidroxialcanoatos/química , Células de Schwann/citología , Andamios del Tejido , Ensayo de Inmunoadsorción Enzimática , Humanos , Microscopía Electrónica de Rastreo , Prohibitinas , Espectroscopía Infrarroja por Transformada de Fourier
19.
Proc Natl Acad Sci U S A ; 108(40): 16565-70, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21949368

RESUMEN

It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces.


Asunto(s)
Algoritmos , Materiales Biocompatibles , Ácido Láctico/química , Células Madre Mesenquimatosas/fisiología , Polímeros/química , Propiedades de Superficie , Proliferación Celular , Bases de Datos Factuales , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Células Madre Mesenquimatosas/citología , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Poliésteres
20.
Adv Sci (Weinh) ; 11(4): e2304987, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37991133

RESUMEN

Combining high-throughput generation and high-content imaging of embryo models will enable large-scale screening assays in the fields of (embryo) toxicity, drug development, embryogenesis, and reproductive medicine. This study shows the continuous culture and in situ (i.e., in microwell) imaging-based readout of a 3D stem cell-based model of peri-implantation epiblast (Epi)/extraembryonic endoderm (XEn) development with an expanded pro-amniotic cavity (PAC) (E3.5 E5.5), namely XEn/EPiCs. Automated image analysis and supervised machine learning permit the identification of embryonic morphogenesis, tissue compartmentalization, cell differentiation, and consecutive classification. Screens with signaling pathway modulators at different time windows provide spatiotemporal information on their phenotypic effect on developmental processes leading to the formation of XEn/EPiCs. Exposure of the biological model in the microwell platform to pathway modulators at two time windows, namely 0-72 h and 48-120 h, show that Wnt and Fgf/MAPK pathway modulators affect Epi differentiation and its polarization, while modulation of BMP and Tgfß/Nodal pathway affects XEn specification and epithelialization. Further, their collective role is identified in the timing of the formation and expansion of PAC. The newly developed, scalable culture and analysis platform, thereby, provides a unique opportunity to quantitatively and systematically study effects of pathway modulators on early embryonic development.


Asunto(s)
Embrión de Mamíferos , Endodermo , Embarazo , Femenino , Humanos , Endodermo/metabolismo , Diferenciación Celular , Morfogénesis , Células Madre Embrionarias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA