Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Opt Express ; 31(22): 36872-36882, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017828

RESUMEN

This paper presents an experimental and theoretical investigation of a graphene-integrated electro-absorption modulator (EAM) based on a slot waveguide. Due to the enhanced light-matter interaction of graphene, the device exhibits an impressive modulation efficiency (0.038 dBµm-1V-1) and bandwidth (≈ 16 GHz). Starting from these results, we carried out an extensive design study, focusing on three crucial design parameters and exploring the associated trade-offs in insertion loss, extinction ratio and bandwidth. The simulation results offer valuable insights into the influence of each design parameter, reaffirming that our slot waveguide platform holds great promise for realizing a high-performance EAM balancing optical and electrical performance. It is important to note that the slot waveguide was defined through standard deep ultraviolet (DUV) lithography, allowing seamless integration into high-density systems.

2.
Opt Express ; 31(26): 42807-42821, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178391

RESUMEN

We present an approach for the heterogeneous integration of InP semiconductor optical amplifiers (SOAs) and lasers on an advanced silicon photonics (SiPh) platform by using micro-transfer-printing (µTP). After the introduction of the µTP concept, the focus of this paper shifts to the demonstration of two C-band III-V/Si photonic integrated circuits (PICs) that are important in data-communication networks: an optical switch and a high-speed optical transmitter. First, a C-band lossless and high-speed Si Mach-Zehnder interferometer (MZI) switch is demonstrated by co-integrating a set of InP SOAs with the Si MZI switch. The micro-transfer-printed SOAs provide 10 dB small-signal gain around 1560 nm with a 3 dB bandwidth of 30 nm. Secondly, an integrated transmitter combining an on-chip widely tunable laser and a doped-Si Mach-Zehnder modulator (MZM) is demonstrated. The laser has a continuous tuning range over 40 nm and the transmitter is capable of 40 Gbps non-return-to-zero (NRZ) back-to-back transmission at wavelengths ranging from 1539 to 1573 nm. These demonstrations pave the way for the realization of complex and fully integrated photonic systems-on-chip with integrated III-V-on-Si components, and this technique is transferable to other material films and devices that can be released from their native substrate.

3.
Opt Express ; 30(22): 39329-39339, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298887

RESUMEN

In this work, we demonstrate for the first time a narrow-linewidth III-V-on-Si double laser structure with more than a 110 nm wavelength tuning range realized using micro-transfer printing (µTP) technology. Two types of pre-fabricated III-V semiconductor optical amplifiers (SOAs) with a photoluminescence (PL) peak around 1500 nm and 1550 nm are micro-transfer printed on two silicon laser cavities. The laser cavities are fabricated in imec's silicon photonics (SiPh) pilot line on 200 mm silicon-on-insulator (SOI) wafers with a 400 nm thick silicon device layer. By combining the outputs of the two laser cavities on chip, wavelength tunability over S+C+L-bands is achieved.

4.
Opt Express ; 29(5): 7601-7615, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726258

RESUMEN

To increase the manufacturing throughput and lower the cost of silicon photonics packaging, an alignment tolerant approach is required to simplify the process of fiber-to-chip coupling. Here, we demonstrate an alignment-tolerant expanded beam backside coupling interface (in the O-band) for silicon photonics by monolithically integrating microlenses on the backside of the chip. After expanding the diffracted optical beam from a TE-mode grating through the bulk silicon substrate, the beam is collimated with the aid of microlenses resulting in an increased coupling tolerance to lateral and longitudinal misalignment. With an expanded beam diameter of 32 µm, a ±7 µm lateral and a ±0.6° angular fiber-to-microlens 1-dB alignment tolerance is demonstrated at the wavelength of 1310 nm. Also, a large 300 µm longitudinal alignment tolerance with a 0.2 dB drop in coupling efficiency is obtained when the collimated beam from the microlens is coupled into a thermally expanded core single-mode fiber.

5.
Opt Express ; 29(10): 14649-14657, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985182

RESUMEN

We present a loss-coupled distributed feedback microlaser, monolithically grown on a standard 300-mm Si wafer using nano-ridge engineering. The cavity is formed by integrating a metallic grating on top of the nano-ridge. This allows forming a laser cavity without etching the III-V material, avoiding damaged interfaces and the associated carrier loss. Simulations, supported by experimental characterisation of the modal gain of the nano-ridge devices, predict an optimal duty cycle for the grating of ~0.4, providing a good trade-off between coupling strength and cavity loss for the lasing mode. The model was experimentally verified by characterising the lasing threshold and external efficiency of devices exhibiting gratings with varying duty cycle. The high modal gain and low threshold obtained prove the excellent quality of the epitaxial material. Furthermore, the low loss metal grating might provide a future route to electrical injection and efficient heat dissipation of these nanoscale devices.

6.
Opt Express ; 28(16): 23950-23960, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752383

RESUMEN

We demonstrate an optical transmitter consisting of a limiting SiGe BiCMOS driver co-designed and co-packaged with a silicon photonic segmented traveling-wave Mach-Zehnder modulator (MZM). The MZM is split into two traveling-wave segments to increase the bandwidth and to allow a 2-bit DAC functionality. Two limiting driver channels are used to drive these segments, allowing both NRZ and PAM4 signal generation in the optical domain. The voltage swing as well as the peaking of the driver output are tunable, hence the PAM4 signal levels can be tuned and possible bandwidth limitations of the MZM segments can be partially alleviated. Generation of 50 Gbaud and 53 Gbaud PAM4 yields a TDECQ of 2.8 and 3.8 dB with a power efficiency of 3.9 and 3.6 pJ/bit, respectively; this is the best reported efficiency for co-packaged silicon transmitters for short-reach datacenter interconnects at these data rates. With this work, we show the potential of limiting drivers and segmented traveling-wave modulators in 400G capable short-reach optical interconnects.

7.
Opt Express ; 28(4): 5706-5714, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121786

RESUMEN

We demonstrate a 200G capable WDM O-band optical transceiver comprising a 4-element array of Silicon Photonics ring modulators (RM) and Ge photodiodes (PD) co-packaged with a SiGe BiCMOS integrated driver and a SiGe transimpedance amplifier (TIA) chip. A 4×50 Gb/s data modulation experiment revealed an average extinction ratio (ER) of 3.17 dB, with the transmitter exhibiting a total energy efficiency of 2 pJ/bit. Data reception has been experimentally validated at 50 Gb/s per lane, achieving an interpolated 10E-12 bit error rate (BER) for an input optical modulation amplitude (OMA) of -9.5 dBm and a power efficiency of 2.2 pJ/bit, yielding a total power efficiency of 4.2 pJ/bit for the transceiver, including heater tuning requirements. This electro-optic subassembly provides the highest aggregate data-rate among O-band RM-based silicon photonic transceiver implementations, highlighting its potential for next generation WDM Ethernet transceivers.

8.
Appl Opt ; 59(4): 1156-1162, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32225255

RESUMEN

Today, one of the key challenges of graphene devices is establishing fabrication processes that can ensure performance stability and repeatability and that can eventually enable production in high volumes. In this paper, we use up-scalable fabrication processes to demonstrate three five-channel wavelength-division multiplexing (WDM) transmitters, each based on five graphene-silicon electro-absorption modulators. A passivation-first approach is used to encapsulate graphene, which results in hysteresis-free and uniform performance across the five channels of each WDM transmitter, for a total of 15 modulators. Open-eye diagrams are obtained at 25 Gb/s using $ 2.5\;{{\rm V}_{{\rm pp}}} $2.5Vpp, thus demonstrating potential for multi-channel data transmission at ${5}\times {25}\;{\rm Gb/s}$5×25Gb/s on each of the three WDM transmitters.

9.
Opt Express ; 27(26): 37781-37794, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878553

RESUMEN

While III-V lasers epitaxially grown on silicon have been demonstrated, an efficient approach for coupling them with a silicon photonics platform is still missing. In this paper, we present a novel design of an adiabatic coupler for interfacing nanometer-scale III-V lasers grown on SOI with other silicon photonics components. The starting point is a directional coupler, which achieves 100% coupling efficiency from the III-V lasing mode to the Si waveguide TE-like ground mode. To improve the robustness and manufacturability of the coupler, a linear-tapered adiabatic coupler is designed, which is less sensitive to variations and still reaches a coupling efficiency of around 98%. Nevertheless, it has a relatively large footprint and exhibits some undesired residual coupling to TM-like modes. To improve this, a more advanced adiabatic coupler whose geometry is varied along its propagation length is designed and manages to reach ∼100% coupling and decoupling within a length of 200 µm. The proposed couplers are designed for the particular case of III-V nano-ridge lasers monolithically grown using aspect-ratio-trapping (ART) together with nano-ridge engineering (NRE) but are believed to be compatible with other epitaxial III-V/Si integration platforms recently proposed. In this way, the presented coupler is expected to pave the way to integrating III-V lasers monolithically grown on SOI wafers with other photonics components, one step closer towards a fully functional silicon photonics platform.

10.
Opt Express ; 26(5): 6276-6284, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529819

RESUMEN

We report an 8 × 8 silicon photonic integrated Arrayed Waveguide Grating Router (AWGR) targeted for WDM routing applications in O-band. The AWGR was designed for cyclic-frequency operation with a channel spacing of 10 nm. The fabricated AWGR exhibits a compact footprint of 700 × 270 µm2. Static device characterization revealed 3.545 dB maximum channel loss non-uniformity with 2.5 dB best-case channel insertion losses and 11 dB channel crosstalk, in good agreement with the simulated results. Successful data routing operation is demonstrated with 25 Gb/s signals for all 8 × 8 AWGR port combinations with a maximum power penalty of 2.45 dB.

11.
Opt Express ; 26(14): 18302-18309, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114011

RESUMEN

In this paper we report a single mode InAs/GaAs quantum dot distributed feedback laser at 1.3 µm wavelength heterogeneously integrated on a Si photonics waveguide circuit. Single mode lasing around 1300 nm with a side-mode suppression ratio higher than 40 dB is demonstrated. High temperature operation with continuous wave lasing up to 100°C is obtained. Threshold current densities as low as 205 A/cm2 were measured. These devices are attractive candidates to use in uncooled silicon photonic transceivers in data centers.

12.
Opt Express ; 26(17): 21443-21454, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130852

RESUMEN

We report on the heterogeneous integration of electrically pumped InP Fabry-Pérot lasers on a SOI photonic integrated circuit by transfer printing. Transfer printing is a promising micromanipulation technique that allows the heterogeneous integration of optical and electronic components realized on their native substrate onto a target substrate with efficient use of the source material, in a way that can be scaled to parallel manipulation and that allows mixing components from different sources onto the same target. We pre-process transfer printable etched facet Fabry-Pérot lasers on their native InP substrate, transfer print them into a trench defined in an SOI photonic chip and post-process the printed lasers on the target substrate. The laser facet is successfully butt-coupled to the photonic circuit using a silicon inverse taper based spot size converter. Milliwatt optical output power coupled to the Si waveguide circuit at 100 mA is demonstrated.

13.
Nano Lett ; 17(1): 559-564, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27997215

RESUMEN

Several approaches for growing III-V lasers on silicon were recently demonstrated. Most are not compatible with further integration, however, and rely on thick buffer layers and require special substrates. Recently, we demonstrated a novel approach for growing high quality InP without buffer on standard 001-silicon substrates using a selective growth process compatible with integration. Here we show high quality InGaAs layers can be grown on these InP-templates. High-resolution TEM analysis shows these layers are free of optically active defects. Contrary to InP, the InGaAs material exhibits strong photoluminescence for wavelengths relevant for integration with silicon photonics integrated circuits. Distributed feedback lasers were defined by etching a first order grating in the top surface of the device. Clear laser operation at a single wavelength with strong suppression of side modes was demonstrated. Compared to the previously demonstrated InP lasers 65% threshold reduction is observed. Demonstration of laser arrays with linearly increasing wavelength prove the control of the process and the high quality of the material. This is an important result toward realizing fully integrated photonic ICs on silicon substrates.

14.
Opt Express ; 23(7): 9369-78, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968767

RESUMEN

Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.

15.
Opt Express ; 22(12): 15178-89, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24977610

RESUMEN

An analytic model is developed to study the dynamic response of carrier-depletion silicon ring modulators. Its validity is confirmed by a detailed comparison between the modeled and the measured small signal frequency response of a practical device. The model is used to investigate how to maximize the optical modulation amplitude (OMA) and how the OMA could be traded for the bandwidth by tuning the coupling strength and the operation wavelength. Our calculation shows that for a ring modulator with equal RC time constant and photon lifetime, if its operation wavelength shifts from the position of the maximum OMA towards the direction that is away from the resonance, the 3dB modulation bandwidth increases ~2.1 times with a penalty of 3 dB to the OMA.

16.
Opt Express ; 22(23): 28479-88, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25402090

RESUMEN

Germanium-on-silicon thermo-optic phase shifters are demonstrated in the 5 µm wavelength range. Basic phase shifters require 700 mW of power for a 2π phase shift. The required power is brought down to 80 mW by complete undercut using focused ion beam. Finally an efficient thermo-optic phase shifter is demonstrated on the germanium on SOI platform. A tuning power (for a 2π phase shift) of 105 mW is achieved for a Ge-on-SOI structure which is lowered to 16 mW for a free standing phase shifter.


Asunto(s)
Germanio/química , Fenómenos Ópticos , Silicio/química , Espectrofotometría Infrarroja/instrumentación , Temperatura , Absorción de Radiación , Simulación por Computador , Interferometría , Microscopía Electrónica de Rastreo
17.
Opt Lett ; 39(22): 6379-82, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25490473

RESUMEN

A silicon dual-ring modulator consisting of two serially cascaded rings with embedded PN junctions is driven by a differential signal pair. We show by simulation and experiment that the device has advantages over the single-ring modulator in terms of optical bandwidth, 3-dB modulation bandwidth and bit rate, at the expense of a 1.7-dB increase in the transmission penalty and a twofold increase of the RF power consumption. Driven by differential pseudo random binary sequence (PRBS) signals of 0.5-V peak-to-peak voltage (Vpp), the dual-ring modulator exhibits optical bandwidths of 66 pm and 40 pm at 12.5 Gb/s and 20 Gb/s, respectively. In contrast, the single-ring modulator has an optical bandwidth of 26 pm under a single-end PRBS signal of 0.5 Vpp at 12.5 Gb/s, and its eye diagram closes if the bit rate rises to 20 Gb/s.

18.
Nano Lett ; 13(11): 5063-9, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24073748

RESUMEN

On-chip optical interconnects still miss a high-performance laser monolithically integrated on silicon. Here, we demonstrate a silicon-integrated InP nanolaser that operates at room temperature with a low threshold of 1.69 pJ and a large spontaneous emission factor of 0.04. An epitaxial scheme to grow relatively thick InP nanowires on (001) silicon is developed. The zincblende/wurtzite crystal phase polytypism and the formed type II heterostructures are found to promote lasing over a wide wavelength range.

19.
Opt Express ; 21(11): 13219-27, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23736576

RESUMEN

Advanced modulation formats call for suitable IQ modulators. Using the silicon-on-insulator (SOI) platform we exploit the linear electro-optic effect by functionalizing a photonic integrated circuit with an organic χ(2)-nonlinear cladding. We demonstrate that this silicon-organic hybrid (SOH) technology allows the fabrication of IQ modulators for generating 16QAM signals with data rates up to 112 Gbit/s. To the best of our knowledge, this is the highest single-polarization data rate achieved so far with a silicon-integrated modulator. We found an energy consumption of 640 fJ/bit.

20.
Micromachines (Basel) ; 14(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36838081

RESUMEN

WA detailed thermal analysis of a hybrid, flip-chip InP-Si DFB laser is presented in this work. The lasers were experimentally tested at different operating temperatures, which allowed for deriving their thermal performance characteristics: the temperature dependence of threshold current, lasing slope, and output spectrum. Using these data, the laser thermal resistance was calculated (Rth = 75.9 K/W), which allows for predicting the laser temperature during operation. This metric is also used to validate the thermal finite element models of the laser. A sensitivity study of the laser temperature was performed using these models, and multiple routes for minimising both the laser thermal resistance and thermal coupling to the carrier die are presented. The most effective way of decreasing the laser temperature is the direct attachment of a heat sink on the laser top surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA