Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Basic Res Cardiol ; 119(2): 309-327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38305903

RESUMEN

Statins are effective drugs in reducing cardiovascular morbidity and mortality by inhibiting cholesterol synthesis. These effects are primarily beneficial for the patient's vascular system. A significant number of statin users suffer from muscle complaints probably due to mitochondrial dysfunction, a mechanism that has recently been elucidated. This has raised our interest in exploring the effects of statins on cardiac muscle cells in an era where the elderly and patients with poorer functioning hearts and less metabolic spare capacity start dominating our patient population. Here, we investigated the effects of statins on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-derived CMs). hiPSC-derived CMs were exposed to simvastatin, atorvastatin, rosuvastatin, and cerivastatin at increasing concentrations. Metabolic assays and fluorescent microscopy were employed to evaluate cellular viability, metabolic capacity, respiration, intracellular acidity, and mitochondrial membrane potential and morphology. Over a concentration range of 0.3-100 µM, simvastatin lactone and atorvastatin acid showed a significant reduction in cellular viability by 42-64%. Simvastatin lactone was the most potent inhibitor of basal and maximal respiration by 56% and 73%, respectively, whereas simvastatin acid and cerivastatin acid only reduced maximal respiration by 50% and 42%, respectively. Simvastatin acid and lactone and atorvastatin acid significantly decreased mitochondrial membrane potential by 20%, 6% and 3%, respectively. The more hydrophilic atorvastatin acid did not seem to affect cardiomyocyte metabolism. This calls for further research on the translatability to the clinical setting, in which a more conscientious approach to statin prescribing might be considered, especially regarding the current shift in population toward older patients with poor cardiac function.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Células Madre Pluripotentes Inducidas , Simvastatina/análogos & derivados , Humanos , Anciano , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Miocitos Cardíacos/metabolismo , Atorvastatina/farmacología , Simvastatina/farmacología , Mitocondrias/metabolismo , Lactonas/metabolismo , Lactonas/farmacología , Concentración de Iones de Hidrógeno
2.
Mol Pharm ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279643

RESUMEN

Intestinal maturational changes after birth affect the pharmacokinetics (PK) of drugs, having major implications for drug safety and efficacy. However, little is known about ontogeny-related PK patterns in the intestine. To explore the accuracy of human enteroid monolayers for studying drug transport in the pediatric intestine, we compared the drug transporter functionality and expression in enteroid monolayers and tissue from pediatrics and adults. Enteroid monolayers were cultured of 14 pediatric [median (range) age: 44 weeks (2 days-13 years)] and 5 adult donors, in which bidirectional drug transport experiments were performed. In parallel, we performed similar experiments with tissue explants in Ussing chamber using 11 pediatric [median (range) age: 54 weeks (15 weeks-10 years)] and 6 adult tissues. Enalaprilat, propranolol, talinolol, and rosuvastatin were used to test paracellular, transcellular, and transporter-mediated efflux by P-gp and breast cancer resistance protein (BCRP), respectively. In addition, we compared the expression patterns of ADME-related genes in pediatric and adult enteroid monolayers with tissues using RNA sequencing. Efflux transport by P-gp and BCRP was comparable between the enteroids and tissue. Efflux ratios (ERs) of talinolol and rosuvastatin by P-gp and BCRP, respectively, were higher in enteroid monolayers compared to Ussing chamber, likely caused by experimental differences in model setup and cellular layers present. Explorative statistics on the correlation with age showed trends of increasing ER with age for P-gp in enteroid monolayers; however, it was not significant. In the Ussing chamber setup, lower enalaprilat and propranolol transport was observed with age. Importantly, the RNA sequencing pathway analysis revealed that age-related variation in drug metabolism between neonates and adults was present in both enteroids and intestinal tissue. Age-related differences between 0 and 6 months old and adults were observed in tissue as well as in enteroid monolayers, although to a lesser extent. This study provides the first data for the further development of pediatric enteroids as an in vitro model to study age-related variation in drug transport. Overall, drug transport in enteroids was in line with data obtained from ex vivo tissue (using chamber) experiments. Additionally, pathway analysis showed similar PK-related differences between neonates and adults in both tissue and enteroid monolayers. Given the challenge to elucidate the effect of developmental changes in the pediatric age range in human tissue, intestinal enteroids derived from pediatric patients could provide a versatile experimental platform to study pediatric phenotypes.

3.
Am J Obstet Gynecol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763343

RESUMEN

BACKGROUND: Antenatal betamethasone and dexamethasone are prescribed to women who are at high risk of premature birth to prevent neonatal respiratory distress syndrome (RDS). The current treatment regimens, effective to prevent neonatal RDS, may be suboptimal. Recently, concerns have been raised regarding possible adverse long-term neurological outcomes due to high fetal drug exposures. Data from nonhuman primates and sheep suggest maintaining a fetal plasma concentration above 1 ng/mL for 48 hours to retain efficacy, while avoiding undesirable high fetal plasma levels. OBJECTIVE: We aimed to re-evaluate the current betamethasone and dexamethasone dosing strategies to assess estimated fetal exposure and provide new dosing proposals that meet the efficacy target but avoid excessive peak exposures. STUDY DESIGN: A pregnancy physiologically based pharmacokinetic (PBPK) model was used to predict fetal drug exposures. To allow prediction of the extent of betamethasone and dexamethasone exposure in the fetus, placenta perfusion experiments were conducted to determine placental transfer. Placental transfer rates were integrated in the PBPK model to predict fetal exposure and model performance was verified using published maternal and fetal pharmacokinetic data. The verified pregnancy PBPK models were then used to simulate alternative dosing regimens to establish a model-informed dose. RESULTS: Ex vivo data showed that both drugs extensively cross the placenta. For betamethasone 15.7±1.7% and for dexamethasone 14.4±1.5%, the initial maternal perfusate concentration reached the fetal circulations at the end of the 3-hour perfusion period. Pregnancy PBPK models that include these ex vivo-derived placental transfer rates accurately predicted maternal and fetal exposures resulting from current dosing regimens. The dose simulations suggest that for betamethasone intramuscular, a dose reduction from 2 dosages 11.4 mg, 24 hours apart, to 4 dosages 1.425 mg, 12 hours apart would avoid excessive peak exposures and still meet the fetal response threshold. For dexamethasone, the dose may be reduced from 4 times 6 mg every 12 hours to 8 times 1.5 mg every 6 hours. CONCLUSION: A combined placenta perfusion and pregnancy PBPK modeling approach adequately predicted both maternal and fetal drug exposures of 2 antenatal corticosteroids (ACSs). Strikingly, our PBPK simulations suggest that drug doses might be reduced drastically to still meet earlier proposed efficacy targets and minimize peak exposures. We propose the provided model-informed dosing regimens are used to support further discussion on an updated ACS scheme and design of clinical trials to confirm the effectiveness and safety of lower doses.

4.
Br J Clin Pharmacol ; 87(4): 2128-2131, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32986871

RESUMEN

Eculizumab is known to cross the placenta to a limited degree, but recently therapeutic drug levels in cord blood were found in a single case. We report maternal, cord and placental levels of unbound eculizumab, C5 and C5-eculizumab in two pregnancies of a paroxysmal nocturnal haemoglobinuria patient who received 900 mg eculizumab every 2 weeks. In both pregnancies, cord blood concentrations of unbound eculizumab were below 4 µg/mL, while C5-eculizumab levels were 22 and 26 µg/mL, suggesting that a considerable fraction of C5 was blocked in the newborn. Concentrations in each placenta of unbound eculizumab were 41 ± 3 and 45 ± 4 µg/g tissue, of C5-eculizumab 19 ± 2 and 32 ± 3 µg/g, and of C5 20 ± 3 and 30 ± 2 µg/g (mean ± SD, in three tissue samples per placenta). Placental levels of unbound eculizumab were higher than those of C5-eculizumab complexes, while maternal concentrations were approximately equal, suggesting selective transport of unbound eculizumab across the placenta.


Asunto(s)
Hemoglobinuria Paroxística , Anticuerpos Monoclonales Humanizados , Femenino , Hemoglobinuria Paroxística/tratamiento farmacológico , Humanos , Recién Nacido , Placenta , Embarazo
5.
Arch Toxicol ; 95(2): 557-571, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33083868

RESUMEN

The application of anticancer drugs during pregnancy is associated with placenta-related adverse pregnancy outcomes. Therefore, it is important to study placental toxicity of anticancer drugs. The aim of this study was to compare effects on viability and steroidogenesis in placental tissue explants and trophoblast cell lines. Third trimester placental tissue explants were exposed for 72 h (culture day 4-7) to a concentration range of doxorubicin, paclitaxel, cisplatin, carboplatin, crizotinib, gefitinib, imatinib, or sunitinib. JEG-3, undifferentiated BeWo, and syncytialised BeWo cells were exposed for 48 h to the same drugs and concentrations. After exposure, tissue and cell viability were assessed and progesterone and estrone levels were quantified in culture medium. Apart from paclitaxel, all compounds affected both cell and tissue viability at clinically relevant concentrations. Paclitaxel affected explant viability moderately, while it reduced cell viability by 50% or more in all cell lines, at 3-10 nM. Doxorubicin (1 µM) reduced viability in explants to 83 ± 7% of control values, whereas it fully inhibited viability in all cell types. Interference with steroid release in explants was difficult to study due to large variability in measurements, but syncytialised BeWo cells proved suitable for this purpose. We found that 1 µM sunitinib reduced progesterone release to 76 ± 6% of control values, without affecting cell viability. While we observed differences between the models for paclitaxel and doxorubicin, most anticancer drugs affected viability significantly in both placental explants and trophoblast cell lines. Taken together, the placenta should be recognized as a potential target organ for toxicity of anticancer drugs.


Asunto(s)
Antineoplásicos/toxicidad , Estrona/análisis , Placenta/efectos de los fármacos , Progesterona/análisis , Trofoblastos/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Células Cultivadas , Citostáticos/toxicidad , Femenino , Humanos , Embarazo , Tercer Trimestre del Embarazo/efectos de los fármacos
6.
Eur J Clin Invest ; 49(12): e13180, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31659743

RESUMEN

BACKGROUND: Patients with primary aldosteronism (PA) experience more cardiovascular events compared to patients with essential hypertension (EHT), independent from blood pressure levels. In animals, mineralocorticoid receptor antagonists limit ischaemia-reperfusion (IR) injury by increasing extracellular adenosine formation and adenosine receptor stimulation. Adenosine is an endogenous compound with profound cardiovascular protective effects. Firstly, we hypothesized that patients with PA have lower circulating adenosine levels which might contribute to the observed increased cardiovascular risk. Secondly, we hypothesized that by this mechanism, patients with PA are more susceptible to IR compared to patients with EHT. DESIGN: In our prospective study in 20 patients with PA and 20 patients with EHT, circulating adenosine was measured using a pharmacological blocker solution that halts adenosine metabolism after blood drawing. Brachial artery flow-mediated dilation (FMD) before and after forearm IR was used as a well-established method to study IR injury. RESULTS: Patients with PA had a 33% lower adenosine level compared to patients with EHT (15.3 [13.3-20.4] vs 22.7 [19.4-36.8] nmol/L, respectively, P < .01). The reduction in FMD after IR, however, did not differ between patients with PA and patients with EHT (-1.0 ± 2.9% vs -1.6 ± 1.6%, respectively, P = .52). CONCLUSIONS: As adenosine receptor stimulation induces various powerful protective cardiovascular effects, its lower concentration in patients with PA might be an important novel mechanism that contributes to their increased cardiovascular risk. We suggest that modulation of the adenosine metabolism is an exciting novel pharmacological opportunity to limit cardiovascular risk in patients with PA that needs further exploration.


Asunto(s)
Adenosina/sangre , Arteria Braquial/fisiopatología , Hipertensión Esencial/sangre , Hiperaldosteronismo/sangre , Daño por Reperfusión/fisiopatología , Vasodilatación/fisiología , Adulto , Estudios de Casos y Controles , Hipertensión Esencial/fisiopatología , Femenino , Antebrazo , Humanos , Hiperaldosteronismo/fisiopatología , Masculino , Persona de Mediana Edad , Estudios Prospectivos
7.
Curr Res Toxicol ; 6: 100149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292667

RESUMEN

Tofacitinib is a small molecule Janus kinase (JAK) inhibitor, introduced to the European market in 2017, for the treatment of rheumatoid arthritis, psoriatic arthritis and ulcerative colitis. In the treatment of women with autoimmune diseases, pregnancy is a relevant issue, as such diseases typically affect women in their reproductive years. Currently, there is limited data on the use of tofacitinib during pregnancy. To estimate the extent of placental transfer in the absence of clinical data, we conducted ex vivo dual-side perfused human placental cotyledon perfusions. Term placentas were perfused for 180 min with tofacitinib (100 nM, added to the maternal circuit) in a closed-closed configuration. At the end of the perfusions, drug concentrations in the maternal and fetal reservoirs were near equilibrium, at 35.6 ± 5.5 and 24.8 ± 4.7 nM, respectively. Transfer of tofacitinib was similar to that observed for the passive diffusion marker antipyrine (100 µg/mL, added to the maternal reservoir). Final antipyrine maternal and fetal concentrations amounted to 36.9 ± 3.0 and 36.7 ± 1.3 µg/mL, respectively. In conclusion, in the ex vivo perfused placenta tofacitinib traverses the placental barrier rapidly and extensively. This suggests that substantial fetal tofacitinib exposure will take place after maternal drug dosing.

8.
Eur J Pharm Sci ; 201: 106877, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39154715

RESUMEN

After oral administration, the intestine is the first site of drug absorption, making it a key determinant of the bioavailability of a drug, and hence drug efficacy and safety. Existing non-clinical models of the intestinal barrier in vitro often fail to mimic the barrier and absorption of the human intestine. We explore if human enteroid monolayers are a suitable tool for intestinal absorption studies compared to primary tissue (Ussing chamber) and Caco-2 cells. Bidirectional drug transport was determined in enteroid monolayers, fresh tissue (Ussing chamber methodology) and Caco-2 cells. Apparent permeability (Papp) and efflux ratios for enalaprilat (paracellular), propranolol (transcellular), talinolol (P-glycoprotein (P-gp)) and rosuvastatin (Breast cancer resistance protein (BCRP)) were determined and compared between all three methodologies and across intestinal regions. Bulk RNA sequencing was performed to compare gene expression between enteroid monolayers and primary tissue. All three models showed functional efflux transport by P-gp and BCRP with higher basolateral to apical (B-to-A) transport compared to apical-to-basolateral (A-to-B). B-to-A Papp values were similar for talinolol and rosuvastatin in tissue and enteroids. Paracellular transport of enalaprilat was lower and transcellular transport of propranolol was higher in enteroids compared to tissue. Enteroids appeared show more region- specific gene expression compared to tissue. Fresh tissue and enteroid monolayers both show active efflux by P-gp and BCRP in jejunum and ileum. Hence, the use of enteroid monolayers represents a promising and versatile experimental platform to complement current in vitro models.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Absorción Intestinal , Propranolol , Rosuvastatina Cálcica , Humanos , Células CACO-2 , Rosuvastatina Cálcica/farmacocinética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Propranolol/farmacocinética , Propranolol/metabolismo , Permeabilidad , Mucosa Intestinal/metabolismo , Enalaprilato/farmacocinética , Enalaprilato/metabolismo , Transporte Biológico , Organoides/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Propanolaminas/farmacocinética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Masculino
9.
Eur J Pharm Sci ; 201: 106868, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084538

RESUMEN

Drug metabolism in the intestinal wall affects bioavailability of orally administered drugs and is influenced by age. Hence, it is important to fully understand the drug metabolizing capacity of the gut to predict systemic exposure. The aim of this study was to investigate the potential of enteroids as a tool to study CYP3A4/5 -mediated metabolism in both children and adults. Bioconversion of midazolam, a CYP3A4/5 model substrate, was studied using enteroid monolayers as well as tissue explants in the Ussing chamber, both derived from pediatric [median (range age): 54 weeks (2 days - 13 years), n = 21] and adult (n = 5) tissue. Caco-2 cellular monolayers were employed as controls. In addition, mRNA expression of CYP3A4 was determined in enteroid monolayers (n = 11), tissue (n = 23) and Caco-2 using RT-qPCR. Midazolam metabolism was successfully detected in all enteroid monolayers, as well as in all tissue explants studied in the Ussing chamber, whereas Caco-2 showed no significant metabolite formation. The extracted fraction of midazolam was similar between enteroid monolayers and tissue. The fraction of midazolam extracted increased with age in enteroid monolayers derived from 0 to 70 week old donors. No statistically significant correlation was observed in tissue likely due to high variability observed and the smaller donor numbers included in the study. At the level of gene expression, CYP3A4 increased with age in tissues (n = 32), while this was not reflected in enteroid monolayers (n = 16). Notably, asymmetric metabolite formation was observed in enteroids and tissue, with higher metabolite formation on the luminal side of the barrier. In summary, we demonstrated that enteroids can be used to measure CYP3A4/5 midazolam metabolism, which we show is similar as observed in fresh isolated tissue. This was the case both in children and adults, indicating the potential of enteroids to predict intestinal metabolism. This study provides promising data to further develop enteroids to study drug metabolism in vitro and potentially predict oral absorption for special populations as an alternative to using fresh tissue.


Asunto(s)
Citocromo P-450 CYP3A , Midazolam , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Midazolam/farmacocinética , Midazolam/metabolismo , Células CACO-2 , Niño , Preescolar , Adolescente , Lactante , Adulto , Recién Nacido , Mucosa Intestinal/metabolismo , Masculino , Organoides/metabolismo , Factores de Edad , Femenino , Intestinos , ARN Mensajero/metabolismo
10.
PLoS One ; 19(6): e0305906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905201

RESUMEN

Uric acid induces radical oxygen species formation, endothelial inflammation, and endothelial dysfunction which contributes to the progression of atherosclerosis. Febuxostat inhibits BCRP- and allopurinol stimulates MRP4-mediated uric acid efflux in human embryonic kidney cells. We hypothesized that endothelial cells express uric acid transporters that regulate intracellular uric acid concentration and that modulation of these transporters by febuxostat and allopurinol contributes to their different impact on cardiovascular mortality. The aim of this study was to explore a potential difference between the effect of febuxostat and allopurinol on uric acid uptake by human umbilical vein endothelial cells. Febuxostat increased intracellular uric acid concentrations compared with control. In contrast, allopurinol did not affect intracellular uric acid concentration. In line with this observation, febuxostat increased mRNA expression of GLUT9 and reduced MRP4 expression, while allopurinol did not affect mRNA expression of these uric acid transporters. These findings provide a possible pathophysiological pathway which could explain the higher cardiovascular mortality for febuxostat compared to allopurinol but should be explored further.


Asunto(s)
Alopurinol , Febuxostat , Proteínas Facilitadoras del Transporte de la Glucosa , Células Endoteliales de la Vena Umbilical Humana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Ácido Úrico , Humanos , Alopurinol/farmacología , Febuxostat/farmacología , Ácido Úrico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Transporte Biológico/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
11.
Antibiotics (Basel) ; 12(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37107064

RESUMEN

Linezolid is used off-label for treatment of central nervous system infections. However, its pharmacokinetics and target attainment in cranial cerebrospinal fluid (CSF) in tuberculous meningitis patients is unknown. This study aimed to predict linezolid cranial CSF concentrations and assess attainment of pharmacodynamic (PD) thresholds (AUC:MIC of >119) in plasma and cranial CSF of adults and children with tuberculous meningitis. A physiologically based pharmacokinetic (PBPK) model was developed to predict linezolid cranial CSF profiles based on reported plasma concentrations. Simulated steady-state PK curves in plasma and cranial CSF after linezolid doses of 300 mg BID, 600 mg BID, and 1200 mg QD in adults resulted in geometric mean AUC:MIC ratios in plasma of 118, 281, and 262 and mean cranial CSF AUC:MIC ratios of 74, 181, and 166, respectively. In children using ~10 mg/kg BID linezolid, AUC:MIC values at steady-state in plasma and cranial CSF were 202 and 135, respectively. Our model predicts that 1200 mg per day in adults, either 600 mg BID or 1200 mg QD, results in reasonable (87%) target attainment in cranial CSF. Target attainment in our simulated paediatric population was moderate (56% in cranial CSF). Our PBPK model can support linezolid dose optimization efforts by simulating target attainment close to the site of TBM disease.

12.
Crit Care Med ; 40(9): 2609-16, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22732294

RESUMEN

OBJECTIVE: Adenosine modulates inflammation and prevents associated organ injury by activation of its receptors. During sepsis, the extracellular adenosine concentration increases rapidly, but the underlying mechanism in humans is unknown. We aimed to determine the changes in adenosine metabolism and signaling both in vivo during experimental human endotoxemia and in vitro. DESIGN: We studied subjects participating in three different randomized double-blind placebo-controlled trials. In order to prevent confounding by the different pharmacological interventions in these trials, analyses were performed on data of placebo-treated subjects only. SETTING: Intensive care research unit at the Radboud University Nijmegen Medical Center. SUBJECTS: In total, we used material of 24 healthy male subjects. INTERVENTIONS: Subjects received 2 ng/kg Escherichia coli endotoxin (lipopolysaccharide) intravenously. MEASUREMENTS AND MAIN RESULTS: Following experimental endotoxemia, endogenous adenosine concentrations increased. Expression of 5'ectonucleotidase messenger RNA was upregulated (p = .01), whereas adenosine deaminase messenger RNA was downregulated (p = .02). Furthermore, both adenosine deaminase and adenosine kinase activity was significantly diminished (both p ≤ .0001). A2a and A2b receptor messenger RNA expression was elevated (p = .02 and p = .04, respectively), whereas messenger RNA expression of A1 and A3 receptors was reduced (both, p = .03). In vitro, lipopolysaccharide dose-dependently attenuated the activity of both adenosine deaminase and adenosine kinase (both p ≤ .0001). CONCLUSIONS: Adenosine metabolism and signaling undergo adaptive changes during human experimental endotoxemia promoting higher levels of adenosine thereby facilitating its inflammatory signaling.


Asunto(s)
Adenosina/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Endotoxinas , Receptores Purinérgicos P1/metabolismo , Adenosina/análisis , Análisis de Varianza , Células Cultivadas , Regulación hacia Abajo , Endotoxemia/sangre , Regulación de la Expresión Génica , Experimentación Humana , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Linfocitos , Masculino , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Purinérgicos P1/genética , Valores de Referencia , Muestreo , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/fisiopatología , Adulto Joven
13.
Drug Metab Dispos ; 40(6): 1076-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22415933

RESUMEN

Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans, which revealed extensive first-pass metabolism of the compound. 7-Hydroxycoumarin (7-HC) and its glucuronide (7-HC-G) are the main metabolites formed in humans, and via this route, 80 to 90% of the absorbed coumarin is excreted into urine, mainly as 7-HC-G. Active transport processes play a role in the urinary excretion of 7-HC-G; however, until now, the transporters involved remained to be elucidated. In this study, we investigated whether the efflux transporters multidrug resistance-associated proteins (MRP)1-4, breast cancer resistance protein, or P-glycoprotein play a role in 7-HC and 7-HC-G transport. For this purpose, we measured uptake of the metabolites into membrane vesicles overexpressing these transporters. Our results showed that 7-HC is not transported by any of the efflux transporters tested, whereas 7-HC-G was a substrate of MRP3 and MRP4. These results are in line with the pharmacokinetic profile of coumarin and suggest that MRP3 and MRP4 are the main transporters involved in the excretion of the coumarin metabolite 7-HC-G from liver and kidney.


Asunto(s)
Cumarinas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Umbeliferonas/metabolismo , Transporte Biológico Activo/fisiología , Células HEK293 , Humanos
14.
Mol Pharm ; 9(5): 1351-60, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22428727

RESUMEN

Although the CB1 receptor antagonist/inverse agonist rimonabant has positive effects on weight loss and cardiometabolic risk factors, neuropsychiatric side effects have prompted researchers to develop peripherally acting derivatives. Here, we investigated for a series of 3,4-diarylpyrazoline CB1 receptor antagonists if transport by the brain efflux transporter P-gp could be used as a selection criterion in the development of such drugs. All 3,4-diarylpyrazolines and rimonabant inhibited P-gp transport activity in membrane vesicles isolated from HEK293 cells overexpressing the transporter, but only the 1,1-dioxo-thiomorpholino analogue 23 exhibited a reduced accumulation (-38 ± 2%) in these cells, which could be completely reversed by the P-gp/BCRP inhibitor elacridar. In addition, 23 appeared to be a BCRP substrate, whereas rimonabant was not. In rats, the in vivo brain/plasma concentration ratio of 23 was significantly lower than for rimonabant (0.4 ± 0.1 vs 6.2 ± 1.6, p < 0.001). Coadministration of elacridar resulted in an 11-fold increase of the brain/plasma ratio for 23 (p < 0.01) and only 1.4-fold for rimonabant (p < 0.05), confirming the involvement of P-gp and possibly BCRP in limiting the brain entrance of 23 in vivo. In conclusion, these data support the conception that efflux via transporters such as P-gp and BCRP can limit the brain penetration of CB1 receptor antagonists, and that this property could be used in the development of peripheral antagonists.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antagonistas de Receptores de Cannabinoides/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Acridinas/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Barrera Hematoencefálica , Western Blotting , Antagonistas de Receptores de Cannabinoides/metabolismo , Línea Celular , Humanos , Cinética , Masculino , Proteínas de Neoplasias/metabolismo , Piperidinas/farmacología , Pirazoles/farmacología , Quinidina/farmacología , Ratas , Ratas Wistar , Rimonabant , Espectrometría de Masas en Tándem , Tetrahidroisoquinolinas/farmacología
15.
Toxicol In Vitro ; 80: 105327, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35134484

RESUMEN

Tumor necrosis factor (TNF) regulates trophoblast turnover during the formation of the placental syncytium and can be a potentially relevant target for adverse effects of xenobiotics. We mimicked syncytialization in vitro by stimulating BeWo cells with 50 µM forskolin. Undifferentiated and syncytialized BeWo cells were exposed to TNF (10 pg/mL-10 ng/mL) for 48 h after which cell viability, progesterone release and gene expression of a selected set of markers representative for placental function were assessed. In undifferentiated BeWo cells, high TNF levels (1-10 ng/mL) increased gene expression of TNF, NF-κB, and TNFRSF1B to maximally 99 ± 17, 2.2 ± 0.2, and 3.0 ± 0.4 of control values, respectively (p < 0.001). These effects were also found in syncytialized BeWo cells but less pronounced. Additionally, TNF may induce syncytialization in BeWo cells as it upregulated ERVW-1 expression by 1.55 ± 0.14-fold (p < 0.05). On the contrary, TNF levels of 10 and 100 pg/mL did not affect gene expression in both undifferentiated and syncytialized BeWo cells, but did enhance cell viability in syncytialised BeWo cells (p < 0.001). In conclusion, we found that high TNF levels (1-10 ng/mL) increased gene expression of TNF, NF-κB, and TNFRSF1B especially in undifferentiated BeWo cells, while physiological TNF concentrations positively affected cell viability and while there was no effect on any of the investigated functional markers.


Asunto(s)
Trofoblastos/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colforsina/farmacología , Femenino , Expresión Génica , Humanos , Embarazo , Progesterona/metabolismo , Trofoblastos/metabolismo
16.
Clin Transl Sci ; 15(10): 2392-2402, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35962572

RESUMEN

Little is known about the impact of age on the processes governing human intestinal drug absorption. The Ussing chamber is a system to study drug transport across tissue barriers, but it has not been used to study drug absorption processes in children. This study aimed to explore the feasibility of the Ussing chamber methodology to assess pediatric intestinal drug absorption. Furthermore, differences between intestinal drug transport processes of children and adults were explored as well as the possible impact of age. Fresh terminal ileal leftover tissues from both children and adults were collected during surgery and prepared for Ussing chamber experiments. Paracellular (enalaprilat), transcellular (propranolol), and carrier-mediated drug transport by MDR1 (talinolol) and BCRP (rosuvastatin) were determined with the Ussing chamber methodology. We calculated apparent permeability coefficients and efflux ratios and explored their relationship with postnatal age. The success rate for the Ussing chamber experiments, as determined by electrophysiological measurements, was similar between children (58%, N = 15, median age: 44 weeks; range 8 weeks to 17 years) and adults (67%, N = 13). Mean serosal to mucosal transport of talinolol by MDR1 and rosuvastatin by BCRP was higher in adult than in pediatric tissues (p = 0.0005 and p = 0.0091). In contrast, within our pediatric cohort, there was no clear correlation for efflux transport across different ages. In conclusion, the Ussing chamber is a suitable model to explore pediatric intestinal drug absorption and can be used to further elucidate ontogeny of individual intestinal pharmacokinetic processes like drug metabolism and transport.


Asunto(s)
Mucosa Intestinal , Propranolol , Niño , Humanos , Lactante , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transporte Biológico , Enalaprilato/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Propranolol/metabolismo , Rosuvastatina Cálcica/metabolismo , Preescolar , Adolescente
17.
J Clin Pharmacol ; 62(3): 385-396, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34554580

RESUMEN

Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.


Asunto(s)
Antituberculosos/farmacología , Moxifloxacino/farmacocinética , Rifampin/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Adulto , Antituberculosos/farmacocinética , Área Bajo la Curva , Niño , Quimioterapia Combinada , Glucuronosiltransferasa/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/metabolismo
18.
Drug Metab Dispos ; 39(7): 1294-302, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21511945

RESUMEN

Cannabinoid type 1 (CB1) receptor antagonists have been developed for the treatment of obesity, but a major disadvantage is that they cause unwanted psychiatric effects. Selective targeting of peripheral CB1 receptors might be an option to circumvent these side effects. Multidrug resistance-associated proteins (MRPs) can influence the pharmacokinetics of drugs and thereby affect their disposition in the body. In this study, we investigated the interaction of the prototypic CB1 receptor antagonist rimonabant and a series of 3,4-diarylpyrazoline CB1 receptor antagonists with MRP1, MRP2, MRP3, and MRP4 in vitro. Their effect on ATP-dependent transport of estradiol 17-ß-D-glucuronide (E(2)17ßG) was measured in inside-out membrane vesicles isolated from transporter-overexpressing human embryonic kidney 293 cells. Rimonabant inhibited MRP1 transport activity more potently than MRP4 (K(i) of 1.4 and 4 µM, respectively), whereas the 3,4-diarylpyrazolines were stronger inhibitors of MRP4- than MRP1-mediated transport. A number of CB1 receptor antagonists, including rimonabant, stimulated MRP2 and MRP3 transport activity at low substrate concentrations but inhibited E(2)17ßG transport at high substrate concentrations. The interaction of 3,4-diarylpyrazolines and rimonabant with MRP1-4 indicates their potential for drug-drug interactions. Preliminary in vivo data suggested that for some 3,4-diarylpyrazolines the relatively lower brain efficacy may be related to their inhibitory potency against MRP4 activity. Furthermore, this study shows that the modulatory effects of the 3,4-diarylpyrazolines were influenced by their chemical properties and that small variations in structure can determine the affinity of these compounds for efflux transporters and thereby affect their pharmacokinetic behavior.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Western Blotting , Línea Celular , Cromatografía Liquida , Humanos , Transporte de Proteínas , Espectrometría de Masas en Tándem
19.
Crit Care ; 15(1): R3, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21211004

RESUMEN

INTRODUCTION: Preclinical studies have shown that the endogenous nucleoside adenosine prevents excessive tissue injury during systemic inflammation. We aimed to study whether endogenous adenosine also limits tissue injury in a human in vivo model of systemic inflammation. In addition, we studied whether subjects with the common 34C > T nonsense variant (rs17602729) of adenosine monophosphate deaminase (AMPD1), which predicts increased adenosine formation, have less inflammation-induced injury. METHODS: In a randomized double-blinded design, healthy male volunteers received 2 ng/kg E. Coli LPS intravenously with (n = 10) or without (n = 10) pretreatment with the adenosine receptor antagonist caffeine (4 mg/kg body weight). In addition, lipopolysaccharide (LPS) was administered to 10 subjects heterozygous for the AMPD1 34C > T variant. RESULTS: The increase in adenosine levels tended to be more pronounced in the subjects heterozygous for the AMPD1 34C > T variant (71 ± 22%, P=0.04), compared to placebo- (59 ± 29%, P=0.012) and caffeine-treated (53 ± 47%, P=0.29) subjects, but this difference between groups did not reach statistical significance. Also the LPS-induced increase in circulating cytokines was similar in the LPS-placebo, LPS-caffeine and LPS-AMPD1-groups. Endotoxemia resulted in an increase in circulating plasma markers of endothelial activation [intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM)], and in subclinical renal injury, measured by increased urinary excretion of tubular injury markers. The LPS-induced increase of these markers did not differ between the three groups. CONCLUSIONS: Human experimental endotoxemia induces an increase in circulating cytokine levels and subclinical endothelial and renal injury. Although the plasma adenosine concentration is elevated during systemic inflammation, co-administration of caffeine or the presence of the 34C > T variant of AMPD1 does not affect the observed subclinical organ damage, suggesting that adenosine does not affect the inflammatory response and subclinical endothelial and renal injury during human experimental endotoxemia. TRIAL REGISTRATION: ClinicalTrials (NCT): NCT00513110.


Asunto(s)
Adenosina/sangre , Cafeína/farmacología , Endotoxemia/sangre , Antagonistas de Receptores Purinérgicos P1/farmacología , Receptores Purinérgicos P1/efectos de los fármacos , AMP Desaminasa/genética , Método Doble Ciego , Escherichia coli , Humanos , Inmunidad Innata , Inflamación/complicaciones , Riñón/lesiones , Lipopolisacáridos , Masculino
20.
Crit Care ; 15(6): R289, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22129171

RESUMEN

INTRODUCTION: In animal models of systemic inflammation, the endogenous nucleoside adenosine controls inflammation and prevents organ injury. Dipyridamole blocks the cellular uptake of endogenous adenosine and increases the extracellular adenosine concentration. We studied the effects of oral dipyridamole treatment on innate immunity and organ injury during human experimental endotoxemia. METHODS: In a randomized double-blind placebo-controlled study, 20 healthy male subjects received 2 ng/kg Escherichia coli endotoxin (lipopolysaccharide; LPS) intravenously after 7-day pretreatment with dipyridamole, 200 mg slow release twice daily, or placebo. RESULTS: Nucleoside transporter activity on circulating erythrocytes was reduced by dipyridamole with 89% ± 2% (P < 0.0001), and the circulating endogenous adenosine concentration was increased. Treatment with dipyridamole augmented the LPS-induced increase in the antiinflammatory cytokine interleukin (IL)-10 with 274%, and resulted in a more rapid decrease in proinflammatory cytokines tumor necrosis factor-α (TNF-α) and IL-6 levels directly after their peak level (P < 0.05 and < 0.01, respectively). A strong correlation was found between the plasma dipyridamole concentration and the adenosine concentration (r = 0.82; P < 0.01), and between the adenosine concentration and the IL-10 concentration (r = 0.88; P < 0.0001), and the subsequent decrease in TNF-α (r = -0.54; P = 0.02). Dipyridamole treatment did not affect the LPS-induced endothelial dysfunction or renal injury during experimental endotoxemia. CONCLUSIONS: Seven-day oral treatment with dipyridamole increases the circulating adenosine concentration and augments the antiinflammatory response during experimental human endotoxemia, which is associated with a faster decline in proinflammatory cytokines. TRIAL REGISTRATION: ClinicalTrials (NCT): NCT01091571.


Asunto(s)
Dipiridamol/uso terapéutico , Endotoxemia/tratamiento farmacológico , Proteínas de Transporte de Nucleósido Equilibrativas/antagonistas & inhibidores , Acetilcolina/farmacología , Creatinina/orina , Método Doble Ciego , Endotoxemia/inmunología , Endotoxinas/farmacología , Antebrazo/irrigación sanguínea , Glutatión Transferasa/orina , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación/microbiología , Masculino , Nitroprusiato/farmacología , Norepinefrina/farmacología , Estrés Oxidativo/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA