RESUMEN
The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations1,2 that contribute to viral escape from antibody neutralization3-6 and reduce vaccine protection from infection7,8. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients (n = 70). Between 70% and 80% of the CD4+ and CD8+ T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere9-12.
Asunto(s)
COVID-19/inmunología , COVID-19/virología , Reacciones Cruzadas/inmunología , Inmunidad Celular , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Vacunas contra la COVID-19/inmunología , Convalecencia , Hospitalización , Humanos , Persona de Mediana Edad , SARS-CoV-2/química , SARS-CoV-2/clasificaciónRESUMEN
SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE: The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Citotoxicidad Celular Dependiente de Anticuerpos , COVID-19 , Reacciones Cruzadas , Receptores de IgG , SARS-CoV-2 , Transducción de Señal , Receptores de IgG/inmunología , Humanos , Anticuerpos Neutralizantes/inmunología , Reacciones Cruzadas/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Transducción de Señal/inmunología , Pruebas de Neutralización , Vacunas contra la COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
The African continent reported the least number of COVID-19 cases and deaths of all the continents, although the exact reasons for this are still unclear. In addition, little is known about the immunological profiles associated with COVID-19 mortality in Africa. The present study compared clinical and immunological parameters, as well as treatment outcomes in patients admitted with COVID-19 in Pretoria, South Africa, to determine if these parameters correlated with mortality in this population. The in-hospital mortality rate for the cohort was 15.79%. The mortality rate in people living with HIV (PLWH) was 10.81% and 17.16% in people without HIV (p = 0.395). No differences in age (p = 0.099), gender (p = 0.127) or comorbidities were found between deceased patients and those who survived. All four of the PLWH who died had a CD4+ T-cell count <200 cells/mm3, a significantly higher HIV viral load than those who survived (p = 0.009), and none were receiving antiretroviral therapy. Seven of 174 (4%) patients had evidence of auto-antibodies neutralizing Type 1 interferons (IFNs). Two of the them died, and their presence was significantly associated with mortality (p = 0.042). In the adjusted model, the only clinical parameters associated with mortality were: higher fraction of inspired oxygen (FiO2) (OR: 3.308, p = 0.011) indicating a greater need for oxygen, high creatinine (OR: 4.424, p = 0.001) and lower platelet counts (OR: 0.203, p = 0.009), possibly secondary to immunothrombosis. Overall, expression of the co-receptor CD86 (p = 0.021) on monocytes and percentages of CD8+ effector memory 2 T-cells (OR: 0.45, p = 0.027) was lower in deceased patients. Decreased CD86 expression impairs the development and survival of effector memory T-cells. Deceased patients had higher concentrations of RANTES (p = 0.003), eotaxin (p = 0.003) and interleukin (IL)-8 (p < 0.001), all involved in the activation and recruitment of innate immune cells. They also had lower concentrations of transforming growth factor (TGF)-ß1 (p = 0.40), indicating an impaired anti-inflammatory response. The immunological profile associated with COVID-19 mortality in South Africa points to the role of aberrate innate immune responses.
Asunto(s)
COVID-19 , Infecciones por VIH , Inmunidad Innata , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/mortalidad , Sudáfrica/epidemiología , Masculino , Femenino , Inmunidad Innata/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/mortalidad , Infecciones por VIH/tratamiento farmacológico , Persona de Mediana Edad , Adulto , SARS-CoV-2/inmunología , Recuento de Linfocito CD4 , Mortalidad Hospitalaria , Carga Viral , AncianoRESUMEN
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.
Asunto(s)
Anticuerpos Antivirales , Reacciones Cruzadas , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Reacciones Cruzadas/inmunología , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Humanos , Evasión Inmune/inmunología , Pruebas de Neutralización , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
Introduction: SARS-CoV-2 elicits a hyper-inflammatory response that contributes to increased morbidity and mortality in patients with COVID-19. In the case of HIV infection, despite effective anti-retroviral therapy, people living with HIV (PLWH) experience chronic systemic immune activation, which renders them particularly vulnerable to the life-threatening pulmonary, cardiovascular and other complications of SARS-CoV-2 co-infection. The focus of the study was a comparison of the concentrations of systemic indicators o\f innate immune dysfunction in SARS-CoV-2-PCR-positive patients (n=174) admitted with COVID-19, 37 of whom were co-infected with HIV. Methods: Participants were recruited from May 2020 to November 2021. Biomarkers included platelet-associated cytokines, chemokines, and growth factors (IL-1ß, IL-6, IL-8, MIP-1α, RANTES, PDGF-BB, TGF-ß1 and TNF-α) and endothelial associated markers (IL-1ß, IL-1Ra, ICAM-1 and VEGF). Results: PLWH were significantly younger (p=0.002) and more likely to be female (p=0.001); median CD4+ T-cell count was 256 (IQR 115 -388) cells/µL and the median HIV viral load (VL) was 20 (IQR 20 -12,980) copies/mL. Fractional inspired oxygen (FiO2) was high in both groups, but higher in patients without HIV infection (p=0.0165), reflecting a greater need for oxygen supplementation. With the exception of PDGF-BB, the levels of all the biomarkers of innate immune activation were increased in SARS-CoV-2/HIV-co-infected and SARS-CoV-2/HIV-uninfected sub-groups relative to those of a control group of healthy participants. The magnitudes of the increases in the levels of these biomarkers were comparable between the SARS-CoV-2 -infected sub-groups, the one exception being RANTES, which was significantly higher in the sub-group without HIV. After adjusting for age, sex, and diabetes in the multivariable model, only the association between HIV status and VEGF was statistically significant (p=0.034). VEGF was significantly higher in PLWH with a CD4+ T-cell count >200 cells/µL (p=0.040) and those with a suppressed VL (p=0.0077). Discussion: These findings suggest that HIV co-infection is not associated with increased intensity of the systemic innate inflammatory response during SARS-CoV-2 co-infection, which may underpin the equivalent durations of hospital stay, outcome and mortality rates in the SARS-CoV-2/HIV-infected and -uninfected sub-groups investigated in the current study. The apparent association of increased levels of plasma VEGF with SARS-CoV-2/HIV co-infection does, however, merit further investigation.
Asunto(s)
COVID-19 , Coinfección , Infecciones por VIH , Humanos , Femenino , Masculino , SARS-CoV-2 , Quimiocina CCL5 , Becaplermina , Infecciones por VIH/complicaciones , Factor A de Crecimiento Endotelial Vascular , BiomarcadoresRESUMEN
The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)-naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Citotoxicidad Celular Dependiente de Anticuerpos , COVID-19 , Infecciones por VIH , Fragmentos Fc de Inmunoglobulinas , Glicoproteína de la Espiga del Coronavirus , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Fragmentos Fc de Inmunoglobulinas/sangre , Fragmentos Fc de Inmunoglobulinas/inmunología , ChAdOx1 nCoV-19/inmunología , ChAdOx1 nCoV-19/uso terapéutico , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacunación , Glicoproteína de la Espiga del Coronavirus/inmunología , Células HEK293 , Humanos , Inmunidad Humoral , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Masculino , Femenino , Adulto , Persona de Mediana EdadRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4 and BA.5 variants caused major waves of infections. Here, we assess the sensitivity of BA.4 to binding, neutralization, and antibody-dependent cellular cytotoxicity (ADCC) potential, measured by FcγRIIIa signaling, in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high-level neutralization resistance regardless of the infecting variant. However, BTIs retain activity against BA.4, albeit at reduced titers. BA.4 sensitivity to ADCC is reduced compared with other variants but with smaller fold losses compared with neutralization and similar patterns of cross-reactivity. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infection, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC potential against BA.4 is reduced, residual activity may contribute to observed protection from severe disease.
Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Sueroterapia para COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos , Infección Irruptiva , COVID-19/inmunología , COVID-19/terapia , SARS-CoV-2/inmunologíaRESUMEN
The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralization-resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.
Asunto(s)
COVID-19 , Vacunas Virales , Ad26COVS1 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Humanos , SARS-CoV-2/genéticaRESUMEN
The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We used plasma from 20 unvaccinated and 7 vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function, and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies targeted Omicron and other VOCs at comparable levels. However, Omicron BA.1-triggered neutralization was not extensively cross-reactive for VOCs (14- to 31-fold titer reduction), and we observed 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection associated with improved cross-neutralization of VOCs with titers exceeding 1:2,100. This has important implications for the vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. Although Omicron-based immunogens might be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2-naive individuals.