Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 19(1): 211-25, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17209125

RESUMEN

Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/citología , Arabidopsis/enzimología , Ciclo Celular/fisiología , Daño del ADN , Proteínas Serina-Treonina Quinasas/fisiología , Afidicolina/farmacología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/fisiología , Células Cultivadas , Quinasas Ciclina-Dependientes/metabolismo , Reparación del ADN , Replicación del ADN , Regulación de la Expresión Génica de las Plantas , Hidroxiurea/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero , Plantones/citología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal
2.
J Biol Chem ; 282(35): 25588-96, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17599908

RESUMEN

The EL2 gene of rice (Oryza sativa), previously classified as early response gene against the potent biotic elicitor N-acetylchitoheptaose and encoding a short polypeptide with unknown function, was identified as a novel cell cycle regulatory gene related to the recently reported SIAMESE (SIM) gene of Arabidopsis thaliana. Iterative two-hybrid screens, in vitro pull-down assays, and fluorescence resonance energy transfer analyses showed that Orysa; EL2 binds the cyclin-dependent kinase (CDK) CDKA1;1 and D-type cyclins. No interaction was observed with the plant-specific B-type CDKs. The amino acid motif ELERFL was identified to be essential for cyclin, but not for CDK binding. Orysa;EL2 impaired the ability of Orysa; CYCD5;3 to complement a budding yeast (Saccharomyces cerevisiae) triple CLN mutant, whereas recombinant protein inhibited CDK activity in vitro. Moreover, Orysa;EL2 was able to rescue the multicellular trichome phenotype of sim mutants of Arabidopsis, unequivocally demonstrating that Orysa;EL2 operates as a cell cycle inhibitor. Orysa;EL2 mRNA levels were induced by cold, drought, and propionic acid. Our data suggest that Orysa;EL2 encodes a new type of plant CDK inhibitor that links cell cycle progression with biotic and abiotic stress responses.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Deshidratación/metabolismo , Oryza/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Frío , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Deshidratación/genética , Mutación Missense , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Oryza/genética , Propionatos/farmacología , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
3.
Plant Cell ; 17(6): 1723-36, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15863515

RESUMEN

Exit from the mitotic cell cycle and initiation of cell differentiation frequently coincides with the onset of endoreduplication, a modified cell cycle during which DNA continues to be duplicated in the absence of mitosis. Although the mitotic cell cycle and the endoreduplication cycle share much of the same machinery, the regulatory mechanisms controlling the transition between both cycles remain poorly understood. We show that the A-type cyclin-dependent kinase CDKA;1 and its specific inhibitor, the Kip-related protein, KRP2 regulate the mitosis-to-endocycle transition during Arabidopsis thaliana leaf development. Constitutive overexpression of KRP2 slightly above its endogenous level only inhibited the mitotic cell cycle-specific CDKA;1 kinase complexes, whereas the endoreduplication cycle-specific CDKA;1 complexes were unaffected, resulting in an increase in the DNA ploidy level. An identical effect on the endoreduplication cycle could be observed by overexpressing KRP2 exclusively in mitotically dividing cells. In agreement with a role for KRP2 as activator of the mitosis-to-endocycle transition, KRP2 protein levels were more abundant in endoreduplicating than in mitotically dividing tissues. We illustrate that KRP2 protein abundance is regulated posttranscriptionally through CDK phosphorylation and proteasomal degradation. KRP2 phosphorylation by the mitotic cell cycle-specific CDKB1;1 kinase suggests a mechanism in which CDKB1;1 controls the level of CDKA;1 activity through regulating KRP2 protein abundance. In accordance with this model, KRP2 protein levels increased in plants with reduced CDKB1;1 activity. Moreover, the proposed model allowed a dynamical simulation of the in vivo observations, validating the sufficiency of the regulatory interactions between CDKA;1, KRP2, and CDKB1;1 in fine-tuning the mitosis-to-endocycle transition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Mitosis/genética , Hojas de la Planta/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Sustancias Macromoleculares/metabolismo , Fosforilación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Ploidias , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/genética , Regulación hacia Arriba/genética
4.
Plant Cell ; 16(10): 2683-92, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15377755

RESUMEN

Transgenic Arabidopsis thaliana plants overproducing the E2Fa-DPa transcription factor have two distinct cell-specific phenotypes: some cells divide ectopically and others are stimulated to endocycle. The decision of cells to undergo extra mitotic divisions has been postulated to depend on the presence of a mitosis-inducing factor (MIF). Plants possess a unique class of cyclin-dependent kinases (CDKs; B-type) for which no ortholog is found in other kingdoms. The peak of CDKB1;1 activity around the G2-M boundary suggested that it might be part of the MIF. Plants that overexpressed a dominant negative allele of CDKB1;1 underwent enhanced endoreduplication, demonstrating that CDKB1;1 activity was required to inhibit the endocycle. Moreover, when the mutant CDKB1;1 allele was overexpressed in an E2Fa-DPa-overproducing background, it enhanced the endoreduplication phenotype, whereas the extra mitotic cell divisions normally induced by E2Fa-DPa were repressed. Surprisingly, CDKB1;1 transcription was controlled by the E2F pathway, as shown by its upregulation in E2Fa-DPa-overproducing plants and mutational analysis of the E2F binding site in the CDKB1;1 promoter. These findings illustrate a cross talking mechanism between the G1-S and G2-M transition points.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Secuencia de Bases , Cartilla de ADN , Factores de Transcripción E2F , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
EMBO J ; 21(6): 1360-8, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11889041

RESUMEN

New plant cells arise at the meristems, where they divide a few times before they leave the cell-cycle program and start to differentiate. Here we show that the E2Fa-DPa transcription factor of Arabidopsis thaliana is a key regulator determining the proliferative status of plant cells. Ectopic expression of E2Fa induced sustained cell proliferation in normally differentiated cotyledon and hypocotyl cells. The phenotype was enhanced strongly by the co-expression of E2Fa with its dimerization partner, DPa. In endoreduplicating cells, E2Fa--DPa also caused extra DNA replication that was correlated with transcriptional induction of S phase genes. Because E2Fa--DPa transgenic plants arrested early in development, we argue that controlled exit of the cell cycle is a prerequisite for normal plant development.


Asunto(s)
Proteínas de Ciclo Celular , Diferenciación Celular/fisiología , Proteínas de Unión al ADN , Factores de Transcripción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis , División Celular , Factores de Transcripción E2F , Expresión Génica , Genes de Plantas/fisiología , Proteínas de Plantas , Plantas Modificadas Genéticamente , Fase S , Factores de Transcripción/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA