Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Am Chem Soc ; 146(32): 22563-22569, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082215

RESUMEN

The ability to quantify individual components of complex mixtures is a challenge found throughout the life and physical sciences. An improved capacity to generate large data sets along with the uptake of machine-learning (ML)-based analysis tools has allowed for various "omics" disciplines to realize exceptional advances. Other areas of chemistry that deal with complex mixtures often do not leverage these advances. Environmental samples, for example, can be more difficult to access, and the resulting small data sets are less appropriate for unconstrained ML approaches. Herein, we present an approach to address this latter issue. Using a very small environmental data set─35 high-resolution mass spectra gathered from various solvent extractions of Canadian petroleum fractions─we show that the application of specific domain knowledge can lead to ML models with notable performance.

2.
Org Biomol Chem ; 22(24): 4888-4894, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38819259

RESUMEN

Benzylic C-H bonds can be converted into numerous functional groups, often by mechanisms that involve hydrogen atom transfer as the key bond breaking step. The abstracting species is most often an electrophilic radical, which makes these reactions best suited to electron-rich C-H bonds to achieve appropriate polarity matching. Thus, electron deficient systems such as pyridine and pyrimidine are relatively unreactive, and therefore underrepresented in substrate scopes. In this report, we describe a new method for heterobenzylic hydroxylation-essentially an unknown reaction in the case of pyrimidines-that makes use of an iodine(III) reagent to afford very high selectivity towards electron-deficient azaheterocycles in substrates with more than one reactive position and prevents over-oxidation to carbonyl products. The identification of key reaction byproducts supports a mechanism that involves radical coupling in the bond forming step.

3.
J Org Chem ; 87(1): 846-854, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34905376

RESUMEN

Pyrazoles are ubiquitous structures in medicinal chemistry. We report the first regioselective route to C3-hydroxyarylated pyrazoles obtained through reaction of pyrazole N-oxides with arynes using mild conditions. Importantly, this method does not require the C4 and C5 positions of the pyrazole to be functionalized to observe regioselectivity. Using this method, we completed the synthesis of a recently reported JAK 1/2 inhibitor. Our synthesis produces the desired product in 4 steps from commercially available starting materials.


Asunto(s)
Pirazoles , Estructura Molecular
4.
Org Biomol Chem ; 18(4): 606-617, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31912069

RESUMEN

Heterocycles are a ubiquitous substructure in organic small molecules designed for use in materials and medicines. Recent work in catalysis has focused on enabling access to new heterocycle structures by sp3 C-H functionalization on alkyl side-chain substituents-especially at the heterobenzylic position-with more than two hundred manuscripts published just within the last ten years. Rather than describing in detail each of these reports, in this mini-review we attempt to highlight gaps in existing techniques. A semi-quantitative overview of ongoing work strongly suggests that several specific heterocycle types and bond formations outside of C-C, C-N, and C-O have been almost completely overlooked.

5.
J Am Chem Soc ; 140(4): 1243-1246, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29345461

RESUMEN

This report details a new method for site-selective methylene oxidation adjacent to azaheterocycles. A dual catalysis approach, utilizing both an iron Lewis acid and an organic hydroxylamine catalyst, proved highly effective. We demonstrate that this method provides complementary selectivity to other known catalytic approaches and represents an improvement over current heterocycle-selective reactions that rely on stoichiometric activation.

6.
Angew Chem Int Ed Engl ; 57(18): 5134-5138, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29486098

RESUMEN

A selective and mild method for the benzylic fluorination of aromatic azaheterocycles with Selectfluor is described. These reactions take place by a previously unreported mechanism, in which electron transfer from the heterocyclic substrate to the electrophilic fluorinating agent Selectfluor eventually yields a benzylic radical, thus leading to the desired C-F bond formation. This mechanism enables high intra- and intermolecular selectivity for aza-heterocycles over other benzylic components with similar C-H bond-dissociation energies.

8.
J Am Chem Soc ; 136(6): 2432-40, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24456083

RESUMEN

The elimination of specific environmental and industrial contaminants, which are hazardous at only part per million to part per billion concentrations, poses a significant technological challenge. Adsorptive materials designed for such processes must be engendered with an exceptionally high enthalpy of adsorption for the analyte of interest. Rather than relying on a single strong interaction, the use of multiple chemical interactions is an emerging strategy for achieving this requisite physical parameter. Herein, we describe an efficient, catalytic synthesis of diamondoid porous organic polymers densely functionalized with carboxylic acids. Physical parameters such as pore size distribution, application of these materials to low-pressure ammonia adsorption, and comparison with analogous materials featuring functional groups of varying acidity are presented. In particular, BPP-5, which features a multiply interpenetrated structure dominated by <6 Å pores, is shown to exhibit an uptake of 17.7 mmol/g at 1 bar, the highest capacity yet demonstrated for a readily recyclable material. A complementary framework, BPP-7, features slightly larger pore sizes, and the resulting improvement in uptake kinetics allows for efficient adsorption at low pressure (3.15 mmol/g at 480 ppm). Overall, the data strongly suggest that the spatial arrangement of acidic sites allows for cooperative behavior, which leads to enhanced NH3 adsorption.

9.
ACS Chem Neurosci ; 13(4): 524-536, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35113527

RESUMEN

Cav3.2 calcium channels are important mediators of nociceptive signaling in the primary afferent pain pathway, and their expression is increased in various rodent models of chronic pain. Previous work from our laboratory has shown that this is in part mediated by an aberrant expression of deubiquitinase USP5, which associates with these channels and increases their stability. Here, we report on a novel bioactive rhodanine compound (II-1), which was identified in compound library screens. II-1 inhibits biochemical interactions between USP5 and the Cav3.2 domain III-IV linker in a dose-dependent manner, without affecting the enzymatic activity of USP5. Molecular docking analysis reveals two potential binding pockets at the USP5-Cav3.2 interface that are distinct from the binding site of the deubiquitinase inhibitor WP1130 (a.k.a. degrasyn). With an understanding of the ability of some rhodanines to produce false positives in high-throughput screening, we have conducted several orthogonal assays to confirm the validity of this hit, including in vivo experiments. Intrathecal delivery of II-1 inhibited both phases of formalin-induced nocifensive behaviors in mice, as well as abolished thermal hyperalgesia induced by the delivery of complete Freund's adjuvant (CFA) to the hind paw. The latter effects were abolished in Cav3.2 null mice, thus confirming that Cav3.2 is required for the action of II-1. II-1 also mediated a robust inhibition of mechanical allodynia induced by injury to the sciatic nerve. Altogether, our data uncover a novel class of analgesics─well suited to rapid structure-activity relationship studies─that target the Cav3.2/USP5 interface.


Asunto(s)
Analgésicos , Canales de Calcio Tipo T , Neuralgia , Proteasas Ubiquitina-Específicas , Analgésicos/farmacología , Animales , Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Neuralgia/metabolismo , Relación Estructura-Actividad , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/metabolismo
10.
Nat Commun ; 12(1): 4995, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404785

RESUMEN

A cell's phenotype and function are influenced by dynamic interactions with its microenvironment. To examine cellular spatiotemporal activity, we developed SPACECAT-Spatially PhotoActivatable Color Encoded Cell Address Tags-to annotate, track, and isolate cells while preserving viability. In SPACECAT, samples are stained with photocaged fluorescent molecules, and cells are labeled by uncaging those molecules with user-patterned near-UV light. SPACECAT offers single-cell precision and temporal stability across diverse cell and tissue types. Illustratively, we target crypt-like regions in patient-derived intestinal organoids to enrich for stem-like and actively mitotic cells, matching literature expectations. Moreover, we apply SPACECAT to ex vivo tissue sections from four healthy organs and an autochthonous lung tumor model. Lastly, we provide a computational framework to identify spatially-biased transcriptome patterns and enriched phenotypes. This minimally perturbative and broadly applicable method links cellular spatiotemporal and/or behavioral phenotypes with diverse downstream assays, enabling insights into the connections between tissue microenvironments and (dys)function.


Asunto(s)
Rastreo Celular/psicología , Colorantes , Transcriptoma , Animales , Bioensayo , Citocinas , Femenino , Fluoresceínas , Colorantes Fluorescentes , Células HEK293 , Estado de Salud , Humanos , Neoplasias Pulmonares , Masculino , Ratones , Células Mieloides , Organoides , Fenotipo , Células Madre , Microambiente Tumoral , Rayos Ultravioleta
11.
J Am Chem Soc ; 132(29): 10012-4, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-20608675

RESUMEN

The mechanism of a recently reported aldehyde alpha-oxyamination reaction has been studied using a combination of kinetic, spectrometric, and spectrophotometric techniques. Most crucially, the use of a validated cyclopropane-based radical-clock substrate has demonstrated that carbon-oxygen bond formation occurs predominantly through an enamine activation manifold. The mechanistic details reported herein indicate that, as has been proposed for previously studied alcohol oxidations, complexation between TEMPO and a simple metal salt leads to electrophilic ionic reactivity.


Asunto(s)
Aldehídos/química , Cloruros/química , Compuestos Férricos/química , Aminación , Catálisis , Óxidos N-Cíclicos/química , Ciclopropanos/química , Electroquímica , Isomerismo , Oxígeno/química , Solventes/química
12.
Chem Sci ; 9(30): 6440-6445, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30310574

RESUMEN

This report describes the development of a novel C-H amination strategy using both a Cu(ii) Lewis acid and an organic hydrogen atom transfer catalyst to activate benzylic C-H bonds adjacent to aromatic N-heterocycles. This simple methodology demonstrates very high selectivity towards azaheterocycles without using exogenous directing groups and affords excellent site selectivity in substrates with more than one reactive position. A wide range of heterocyclic structures not compatible with previously reported catalytic systems have proven to be amenable to this approach. Mechanistic investigations strongly support a radical-mediated H-atom abstraction, which explains the observed contrast to known closed-shell Lewis acid catalyzed processes.

13.
ACS Cent Sci ; 2(4): 253-65, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27163056

RESUMEN

Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity.

15.
Chem Sci ; 6(10): 5499-5505, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28757947

RESUMEN

A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25-0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

16.
Chem Sci ; 3(1): 58-61, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22308217

RESUMEN

A new enantioselective α-oxidation of aldehydes has been accomplished using TEMPO and a synergistic combination of copper and organic catalysis. Expanding upon recently reported mechanistic studies, these mild catalytic conditions provide stable aldehyde products bearing a wide array of electronically and sterically diverse substructures. The utility of these oxidized products is highlighted by subsequent derivatization to a variety of common chiral synthons, without loss in enantiopurity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA