Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(21): 34843-34854, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859231

RESUMEN

Integrated photonic reservoir computing has been demonstrated to be able to tackle different problems because of its neural network nature. A key advantage of photonic reservoir computing over other neuromorphic paradigms is its straightforward readout system, which facilitates both rapid training and robust, fabrication variation-insensitive photonic integrated hardware implementation for real-time processing. We present our recent development of a fully-optical, coherent photonic reservoir chip integrated with an optical readout system, capitalizing on these benefits. Alongside the integrated system, we also demonstrate a weight update strategy that is suitable for the integrated optical readout hardware. Using this online training scheme, we successfully solved 3-bit header recognition and delayed XOR tasks at 20 Gbps in real-time, all within the optical domain without excess delays.

2.
Opt Express ; 31(26): 42807-42821, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178391

RESUMEN

We present an approach for the heterogeneous integration of InP semiconductor optical amplifiers (SOAs) and lasers on an advanced silicon photonics (SiPh) platform by using micro-transfer-printing (µTP). After the introduction of the µTP concept, the focus of this paper shifts to the demonstration of two C-band III-V/Si photonic integrated circuits (PICs) that are important in data-communication networks: an optical switch and a high-speed optical transmitter. First, a C-band lossless and high-speed Si Mach-Zehnder interferometer (MZI) switch is demonstrated by co-integrating a set of InP SOAs with the Si MZI switch. The micro-transfer-printed SOAs provide 10 dB small-signal gain around 1560 nm with a 3 dB bandwidth of 30 nm. Secondly, an integrated transmitter combining an on-chip widely tunable laser and a doped-Si Mach-Zehnder modulator (MZM) is demonstrated. The laser has a continuous tuning range over 40 nm and the transmitter is capable of 40 Gbps non-return-to-zero (NRZ) back-to-back transmission at wavelengths ranging from 1539 to 1573 nm. These demonstrations pave the way for the realization of complex and fully integrated photonic systems-on-chip with integrated III-V-on-Si components, and this technique is transferable to other material films and devices that can be released from their native substrate.

3.
Opt Express ; 30(15): 27983-27992, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236955

RESUMEN

We present recent results on compact and power efficient C-band distributed feedback lasers through adhesive bonding of a III-V die onto a silicon-on-insulator circuit. A wall-plug efficiency up to 16% is achieved for bias currents below 40 mA. The laser cavity is 180 µm long and a single facet output power up to 11 mW is measured at 20 °C by incorporating a broadband reflector in the silicon waveguide at one side of the cavity. Single mode operation at 1567 nm with a side mode suppression ratio of around 55 dB is demonstrated. By controlling the phase of the external feedback, the laser linewidth is decreased to 28 kHz. Measurement result shows a low relative intensity noise below -150 dB/Hz at 60 mA up to 6 GHz. We also report 20 and 10 Gbps data transmission at a bias current of 50 mA at 20 °C and 40 °C, respectively.

4.
Opt Express ; 27(6): 8395-8413, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052658

RESUMEN

An advanced transmit remote opto-antenna unit is proposed that accomplishes impedance matching between a photodetector and a low-profile antenna in a specified frequency bandwidth, without requiring an area-consuming matching network. This results in a highly compact design, which also avoids the losses and spurious radiation by such an electrically large matching circuit. Instead, the photodetector is almost directly connected to the antenna, which is designed as a conjugate load, such that the extracted and radiated power are optimized. The required input impedance for the antenna is obtained by adopting a half-mode air-filled substrate-integrated-waveguide topology, which also exhibits excellent radiation efficiency. The proposed unit omits electrical amplifiers and is, therefore, completely driven by the signal supplied by an optical fiber when deployed in an analog optical link, except for an externally supplied photodetector bias voltage. Such a highly cost-effective, power-efficient and reliable unit is an important step in making innovative wireless communication systems, which deploy extremely dense attocells of 15 cm × 15 cm, technically and economically feasible. As a validation, a prototype, operating in the Unlicensed National Information Infrastructure radio bands (5.15 GHz-5.85 GHz), is constructed and its radiation properties are characterized in free-space conditions. After normalizing with respect to the optical source's slope efficiency, a maximum boresight gain of 12.0 dBi and a -3 dB gain bandwidth of 1020 MHz (18.6 %) are observed.

5.
Opt Express ; 26(5): 6351-6359, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529827

RESUMEN

We propose and demonstrate the integration of 850 nm GaAs-based metal-semiconductor-metal (MSM) photodetectors (PDs) based on transfer printing for application in photonic interposers. Both devices that directly interface with a multimode optical fiber (with device dimensions of 70 µm × 70 µm) as well as devices that interface with a SiN waveguide layer through a grating coupler (with device dimensions of 30 µm × 30 µm) are demonstrated. The dark currents are measured to be 22 nA and 7.2 nA at 2 V bias for the larger and smaller PDs respectively. For 850 nm wavelength, the external responsivities are measured to be 0.117 A/W and 0.1 A/W at 2 V bias. 20 GHz bandwidth is measured. Open 40 Gb/s eye diagrams are realized.

6.
Opt Express ; 26(8): 10519-10526, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29715987

RESUMEN

A BiCMOS chip-based real-time intensity modulation/direct detection spatial division multiplexing system is experimentally demonstrated for both optical interconnects. 100 Gbps/λ/core electrical duobinary (EDB) transmission over 1 km 7-core multicore fiber (MCF) is carried out, achieving KP4 forward error correction (FEC) limit (BER < 2E-4). Using optical dispersion compensation, 7 × 100 Gbps/λ/core transmission of both non-return-to-zero (NRZ) and EDB signals over 10 km MCF transmission is achieved with BER lower than 7% overhead hard-decision FEC limit (BER < 3.8E-3). The integrated low complexity transceiver IC and analog signal processing approach make such a system highly attractive for the high-speed intra-datacenter interconnects.

7.
Opt Express ; 23(20): 26479-85, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480161

RESUMEN

We demonstrate direct modulation of a heterogeneously integrated C-band DFB laser on SOI at 28 Gb/s with a 2 dB extinction ratio. This is the highest direct modulation bitrate so far reported for a membrane laser coupled to an SOI waveguide. The laser operates single mode with 6 mW output power at 100 mA bias current. The 3 dB modulation bandwidth is 15 GHz. Transmission experiments using a 2 km non zero dispersion shifted single mode fiber were performed at 28 Gb/s bitrate using a 2(7)-1 NRZ-PRBS pattern resulting in a 1 dB power penalty.

8.
Sci Rep ; 13(1): 20560, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996612

RESUMEN

To address the rising demand for high-speed wireless data links, communication systems operating at frequencies beyond [Formula: see text] are being targeted. A key enabling technology in the development of these wireless systems is the phased antenna array. Yet, the design and implementation of such steerable antenna arrays at frequencies over [Formula: see text] comes with a multitude of challenges. In particular, the cointegration of active electronics at each antenna element poses a major hurdle due to the inherent space constraints in the array. This article proposes a novel scalable concept for opto-electronic phased antenna arrays operating at 140 GHz. It details the system architecture of a transmitter that enables the implementation of large scale, wideband, 2D steerable phased antenna arrays and presents the design and measurement of a compact SiGe power amplifier (PA) chip to be used as one of its key building blocks. The amplifier achieves a gain of 20 dB at 135 GHz, features a [Formula: see text] of 14.6 dBm and can support data rates up to 45 Gbps in a limited footprint of only 540µm × 550µm. This makes it one of the fastest, most powerful D-band power amplifiers in literature with a footprint compatible with [Formula: see text]-spaced phased array integration.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38083060

RESUMEN

Aside from a clinical interest in electroencephalography (EEG) measurements of real-time data with a high temporal resolution, there is a demand for acquisition systems that are operable outside the laboratory environment. In this study, we designed a wearable and low-power EEG system for multichannel EEG acquisition beyond the lab doors. Around-the-ear cEEGrid electrodes are used to capture 8 biopotential channels which are amplified by low-power precision instrumentation amplifiers and passed on to an analog-to-digital converter (ADC). An ESP32 micro-controller captures the data from the ADC and stores it on an external SD card. The proposed system is compared to a state-of-the-art EEG acquisition system (BioSemi) to assess its diagnostic power for auditory brainstem responses (ABRs). The recordings with our portable system match, and even outperform, the baseline method's specifications. Our hardware opens up new avenues for fast sampling-rate auditory EEG recordings that can be used in hearing diagnostics, damage prevention and treatment follow up.


Asunto(s)
Electroencefalografía , Dispositivos Electrónicos Vestibles , Electrodos , Audición , Amplificadores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA