RESUMEN
Aerobic anoxygenic phototrophic (AAP) bacteria harvest light energy using bacteriochlorophyll-containing reaction centers to supplement their mostly heterotrophic metabolism. While their abundance and growth have been intensively studied in coastal environments, much less is known about their activity in oligotrophic open ocean regions. Therefore, we combined in situ sampling in the North Pacific Subtropical Gyre, north of O'ahu island, Hawaii, with two manipulation experiments. Infra-red epifluorescence microscopy documented that AAP bacteria represented approximately 2% of total bacteria in the euphotic zone with the maximum abundance in the upper 50 m. They conducted active photosynthetic electron transport with maximum rates up to 50 electrons per reaction center per second. The in situ decline of bacteriochlorophyll concentration over the daylight period, an estimate of loss rates due to predation, indicated that the AAP bacteria in the upper 50 m of the water column turned over at rates of 0.75-0.90 d-1. This corresponded well with the specific growth rate determined in dilution experiments where AAP bacteria grew at a rate 1.05 ± 0.09 d-1. An amendment of inorganic nitrogen to obtain N:P = 32 resulted in a more than 10 times increase in AAP abundance over 6 days. The presented data document that AAP bacteria are an active part of the bacterioplankton community in the oligotrophic North Pacific Subtropical Gyre and that their growth was mostly controlled by nitrogen availability and grazing pressure.IMPORTANCEMarine bacteria represent a complex assembly of species with different physiology, metabolism, and substrate preferences. We focus on a specific functional group of marine bacteria called aerobic anoxygenic phototrophs. These photoheterotrophic organisms require organic carbon substrates for growth, but they can also supplement their metabolic needs with light energy captured by bacteriochlorophyll. These bacteria have been intensively studied in coastal regions, but rather less is known about their distribution, growth, and mortality in the oligotrophic open ocean. Therefore, we conducted a suite of measurements in the North Pacific Subtropical Gyre to determine the distribution of these organisms in the water column and their growth and mortality rates. A nutrient amendment experiment showed that aerobic anoxygenic phototrophs were limited by inorganic nitrogen. Despite this, they grew more rapidly than average heterotrophic bacteria, but their growth was balanced by intense grazing pressure.
Asunto(s)
Bacterioclorofilas , Procesos Fototróficos , Bacterioclorofilas/metabolismo , Bacterias Aerobias , Agua/metabolismo , Nitrógeno/metabolismo , Agua de Mar/microbiologíaRESUMEN
Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.
Asunto(s)
Oxígeno , Oxígeno/metabolismo , Consumo de Oxígeno , Animales , Plancton/metabolismo , Copépodos/metabolismoRESUMEN
Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.
Asunto(s)
Alelopatía , Diatomeas , Oxilipinas , Oxilipinas/metabolismo , Animales , Organismos Acuáticos , ZooplanctonRESUMEN
Extracellular vesicles are small (~50-200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, their functions, both for cells themselves and the emergent ecosystem, remain a mystery. To better characterize these particles - a prerequisite for determining function - we analysed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus. We show that Prochlorococcus exports a diverse array of cellular compounds into the surrounding seawater enclosed within discrete vesicles. Vesicles produced by two different strains contain some materials in common, but also display numerous strain-specific differences, reflecting functional complexity within vesicle populations. The vesicles contain active enzymes, indicating that they can mediate extracellular biogeochemical reactions in the ocean. We further demonstrate that vesicles from Prochlorococcus and other bacteria associate with diverse microbes including the most abundant marine bacterium, Pelagibacter. Together, our data point toward hypotheses concerning the functional roles of vesicles in marine ecosystems including, but not limited to, possibly mediating energy and nutrient transfers, catalysing extracellular biochemical reactions, and mitigating toxicity of reactive oxygen species.
Asunto(s)
Vesículas Extracelulares , Prochlorococcus , Adsorción , Ecosistema , Prochlorococcus/metabolismo , Agua de Mar/microbiologíaRESUMEN
Although the natural occurrence of arsenic-containing lipids (arsenolipids) in marine organisms is now well established, the possible role of these unusual compounds in organisms and in the cycling of arsenic in marine systems remains largely unexplored. We report the finding of arsenolipids in 61 plankton samples collected from surface marine waters of high- and low-nutrient content along a transect spanning the Gulf Stream in the North Atlantic Ocean. Using high-performance liquid chromatography (HPLC) coupled to both elemental and molecular mass spectrometry, we show that all 61 plankton samples contained six identifiable arsenolipids, namely, three arsenosugar phospholipids (AsPL958, 10-13%; AsPL978, 13-25%; and AsPL1006, 7-10% of total arsenolipids), two arsenic-containing hydrocarbons (AsHC332, 4-10% and AsHC360, 1-2%), and a methoxy-sugar arsenolipid that contained phytol (AsSugPhytol, 1-3%). The relative amounts of the six arsenolipids showed clear dependence on the nutrient status of the ambient water with plankton collected from high-nutrient waters having less of the arsenosugar phospholipids and more of the three non-P containing arsenolipids compared to low-nutrient waters. By combining these first field data of arsenolipids in plankton with reported global phytoplankton productivity, we estimate that the oceans' phytoplankton transform per year 50â¯000-100â¯000 tons of arsenic into arsenolipids.
Asunto(s)
Nutrientes , Plancton , Océano Atlántico , Cromatografía Líquida de Alta Presión , Espectrometría de MasasRESUMEN
Sinking particulate organic matter (POM) is a primary component of the ocean's biological carbon pump that is responsible for carbon export from the surface to the deep sea. Lipids derived from plankton comprise a significant fraction of sinking POM. Our understanding of planktonic lipid biosynthesis and the subsequent degradation of lipids in sinking POM is based on the analysis of bulk samples that combine many millions of plankton cells or dozens of sinking particles, which averages out natural heterogeneity. We developed and applied a nanoflow high-performance liquid-chromatography electrospray-ionization high-resolution accurate-mass mass spectrometry lipidomic method to show that two types of sinking particlesâmarine snow and fecal pelletsâcollected in the western North Atlantic Ocean have distinct lipidomes, providing new insights into their sources and degradation that would not be apparent from bulk samples. We pressed the limit of this approach by examining individual diatom cells from a single culture, finding marked lipid heterogeneity, possibly indicative of fundamental mechanisms underlying cell division. These single-cell data confirm that even cultures of phytoplankton cells should be viewed as mixtures of physiologically distinct populations. Overall, this work reveals previously hidden lipidomic heterogeneity in natural POM and phytoplankton cells, which may provide critical new insights into microscale chemical and microbial processes that control the export of sinking POM.
Asunto(s)
Lipidómica , Fitoplancton , Océanos y Mares , Plancton , Agua de MarRESUMEN
Diatom blooms are important features of productive marine ecosystems and are known to support higher trophic levels. However, when stressed or wounded, diatoms can produce oxylipin molecules known to inhibit the reproduction and development of copepods and decrease microzooplankton growth rates. Using oxylipin chemical treatments, lipidomic analysis and functional genomic approaches, we provide evidence that nitric oxide (NO) and oxylipin signalling pathways in diatoms respond to protist grazers, resulting in increased defence fitness and survival. Exposure of the diatom Phaeodactylum tricornutum to the dinoflagellate Oxyrrhis marina resulted in NO production by P. tricornutum and pronounced change in its dissolved oxylipin profile. Experimentally elevating levels of NO also resulted in increased oxylipin production, and lower overall grazing rates. Furthermore, O. marina preferentially grazed on P. tricornutum prey with lower levels of NO, suggesting that this molecule and its effect on oxylipin pathways play a key role in prey selection. Exposure of O. marina grazing on P. tricornutum to exogenous oxylipins also decreased grazing rates, which is consistent with a grazing deterrence role for these molecules. These results suggest that NO and oxylipin production help to structure diatom communities, in part by modulating interactions with microzooplankton predators.
Asunto(s)
Diatomeas/metabolismo , Dinoflagelados/metabolismo , Conducta Alimentaria/fisiología , Óxido Nítrico/metabolismo , Oxilipinas/metabolismo , Animales , Copépodos/crecimiento & desarrollo , Ecosistema , Oxilipinas/farmacología , Reproducción/fisiología , Transducción de SeñalRESUMEN
Two prominent characteristics of marine coccolithophores are their secretion of coccoliths and their susceptibility to infection by coccolithoviruses (EhVs), both of which display variation among cells in culture and in natural populations. We examined the impact of calcification on infection by challenging a variety of Emiliania huxleyi strains at different calcification states with EhVs of different virulence. Reduced cellular calcification was associated with increased infection and EhV production, even though calcified cells and associated coccoliths had significantly higher adsorption coefficients than non-calcified (naked) cells. Sialic acid glycosphingolipids, molecules thought to mediate EhV infection, were generally more abundant in calcified cells and enriched in purified, sorted coccoliths, suggesting a biochemical link between calcification and adsorption rates. In turn, viable EhVs impacted cellular calcification absent of lysis by inducing dramatic shifts in optical side scatter signals and a massive release of detached coccoliths in a subpopulation of cells, which could be triggered by resuspension of healthy, calcified host cells in an EhV-free, 'induced media'. Our findings show that calcification is a key component of the E. huxleyi-EhV arms race and an aspect that is critical both to the modelling of these host-virus interactions in the ocean and interpreting their impact on the global carbon cycle.
Asunto(s)
Haptophyta/virología , Phycodnaviridae/fisiología , Enfermedades de las Plantas/virología , Calcinosis , Haptophyta/fisiología , Interacciones Huésped-Patógeno , Phycodnaviridae/genética , Phycodnaviridae/aislamiento & purificaciónRESUMEN
Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi-EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.
Asunto(s)
Glicoesfingolípidos/biosíntesis , Phycodnaviridae/metabolismo , Ecología , Haptophyta/virología , Modelos Teóricos , Phycodnaviridae/enzimología , Phycodnaviridae/genética , Phycodnaviridae/patogenicidad , Serina C-Palmitoiltransferasa , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia , Replicación ViralRESUMEN
Arsenic occurs in marine waters, typically at concentrations of 1-2 µg As kg-1, primarily as the inorganic species arsenate. Marine animals, however, contain extremely high levels of arsenic (typically 2000-20â¯000 µg As kg-1 wet mass), most of which is present as arsenobetaine, an organic form of arsenic that has never been found in seawater. We report a method based on ion-exchange preconcentration and HPLC/mass spectrometry to measure arsenobetaine in seawater, and apply the method to samples of seawater collected at various depths from seven sites in the North Atlantic. Arsenobetaine was detected in most samples at levels ranging from 0.5 to 10 ng As kg-1, and was found at depths down to 4900 m. Furthermore, we report the presence of 15 additional organoarsenicals in seawater, 14 of which had never been detected in marine waters. The arsenobetaine depth profile was related, albeit weakly, to that of chlorophyll; this relationship probably reflects arsenobetaine's release to water from marine animals associated with the euphotic zone rather than its direct biosynthesis by primary producers. Future application of the new method for seawater analysis will shed new light on the biogeochemical cycle of marine arsenic.
Asunto(s)
Arsénico , Arsenicales , Animales , Espectrometría de Masas , Agua de MarRESUMEN
Diatoms and other phytoplankton play a crucial role in the global carbon cycle, fixing CO2 into organic carbon, which may then be exported to depth via sinking particles. The molecular diversity of this organic carbon is vast and many highly bioactive molecules have been identified. Polyunsaturated aldehydes (PUAs) are bioactive on various levels of the marine food web, and yet the potential for these molecules to affect the fate of organic carbon produced by diatoms remains an open question. In this study, the effects of PUAs on the natural microbial assemblages associated with sinking particles were investigated. Sinking particles were collected from 150 m in the water column and exposed to varying concentrations of PUAs in dark incubations over 24 h. PUA doses ranging from 1 to 10 µM stimulated respiration, organic matter hydrolysis, and cell growth by bacteria associated with sinking particles. PUA dosages near 100 µM appeared to be toxic, resulting in decreased bacterial cell abundance and metabolism, as well as pronounced shifts in bacterial community composition. Sinking particles were hot spots for PUA production that contained concentrations within the stimulatory micromolar range in contrast to previously reported picomolar concentrations of these compounds in bulk seawater. This suggests PUAs produced in situ stimulate the remineralization of phytoplankton-derived sinking organic matter, decreasing carbon export efficiency, and shoaling the average depths of nutrient regeneration. Our results are consistent with a "bioactivity hypothesis" for explaining variations in carbon export efficiency in the oceans.
Asunto(s)
Aldehídos/química , Ciclo del Carbono , Dióxido de Carbono/química , Atmósfera , Bacterias/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Carbono/química , Cromatografía Líquida de Alta Presión , Lipasa/química , Océanos y Mares , Oxígeno/química , Fitoplancton , Agua de Mar , EspectrofotometríaRESUMEN
Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum. Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down the gene encoding for nitrate reductase, a key enzyme required for the assimilation of nitrate. The strain exhibits 40-50% of the mRNA copy numbers, protein content, and enzymatic activity of the wild type, concomitant with a 43% increase in cellular lipid content. We suggest a negative feedback sensor that couples photosynthetic carbon fixation to lipid biosynthesis and is regulated by the nitrogen assimilation pathway. This metabolic feedback enables diatoms to rapidly respond to fluctuations in environmental nitrogen availability.
Asunto(s)
Diatomeas/metabolismo , Nitrógeno/metabolismo , Diatomeas/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Metabolismo de los Lípidos , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas , Modelos Biológicos , Nitrato-Reductasa/antagonistas & inhibidores , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Estrés FisiológicoRESUMEN
Phytoplankton inhabiting oligotrophic ocean gyres actively reduce their phosphorus demand by replacing polar membrane phospholipids with those lacking phosphorus. Although the synthesis of nonphosphorus lipids is well documented in some heterotrophic bacterial lineages, phosphorus-free lipid synthesis in oligotrophic marine chemoheterotrophs has not been directly demonstrated, implying they are disadvantaged in phosphate-deplete ecosystems, relative to phytoplankton. Here, we show the SAR11 clade chemoheterotroph Pelagibacter sp. str. HTCC7211 renovates membrane lipids when phosphate starved by replacing a portion of its phospholipids with monoglucosyl- and glucuronosyl-diacylglycerols and by synthesizing new ornithine lipids. Lipid profiles of cells grown with excess phosphate consisted entirely of phospholipids. Conversely, up to 40% of the total lipids were converted to nonphosphorus lipids when cells were starved for phosphate, or when growing on methylphosphonate. Cells sequentially limited by phosphate and methylphosphonate transformed >75% of their lipids to phosphorus-free analogs. During phosphate starvation, a four-gene cluster was significantly up-regulated that likely encodes the enzymes responsible for lipid renovation. These genes were found in Pelagibacterales strains isolated from a phosphate-deficient ocean gyre, but not in other strains from coastal environments, suggesting alternate lipid synthesis is a specific adaptation to phosphate scarcity. Similar gene clusters are found in the genomes of other marine α-proteobacteria, implying lipid renovation is a common strategy used by heterotrophic cells to reduce their requirement for phosphorus in oligotrophic habitats.
Asunto(s)
Metabolismo de los Lípidos , Fosfatos/metabolismo , Perfilación de la Expresión Génica , Genes Bacterianos , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/metabolismoRESUMEN
About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.
Asunto(s)
Ciclo del Carbono , Plancton/metabolismo , Azufre/metabolismo , Alcanosulfonatos/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Ecosistema , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Modelos Biológicos , Filogenia , Fitoplancton/genética , Fitoplancton/metabolismo , Plancton/genética , Roseobacter/genética , Roseobacter/metabolismo , Agua de Mar/microbiología , Vitamina B 12/metabolismoRESUMEN
Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles.
Asunto(s)
Ciclo del Carbono/fisiología , Ciclo del Nitrógeno/fisiología , Fósforo/metabolismo , Plancton/metabolismo , Polifosfatos/metabolismo , Estrés Fisiológico/fisiología , Synechococcus/metabolismo , Fosfatasa Alcalina/metabolismo , Océano Atlántico , Carbono/metabolismo , Ecosistema , Lípidos , Biología Marina/métodos , Nitrógeno/metabolismo , Plancton/crecimiento & desarrollo , Agua de Mar/química , Agua de Mar/microbiología , Synechococcus/crecimiento & desarrolloRESUMEN
Discovery and identification of molecular biomarkers in large LC/MS data sets requires significant automation without loss of accuracy in the compound screening and annotation process. Here, we describe a lipidomics workflow and open-source software package for high-throughput annotation and putative identification of lipid, oxidized lipid, and oxylipin biomarkers in high-mass-accuracy HPLC-MS data. Lipid and oxylipin biomarker screening through adduct hierarchy sequences, or LOBSTAHS, uses orthogonal screening criteria based on adduct ion formation patterns and other properties to identify thousands of compounds while providing the user with a confidence score for each assignment. Assignments are made from one of two customizable databases; the default databases contain 14â¯068 unique entries. To demonstrate the software's functionality, we screened more than 340â¯000 mass spectral features from an experiment in which hydrogen peroxide was used to induce oxidative stress in the marine diatom Phaeodactylum tricornutum. LOBSTAHS putatively identified 1969 unique parent compounds in 21â¯869 features that survived the multistage screening process. While P. tricornutum maintained more than 92% of its core lipidome under oxidative stress, patterns in biomarker distribution and abundance indicated remodeling was both subtle and pervasive. Treatment with 150 µM H2O2 promoted statistically significant carbon-chain elongation across lipid classes, with the strongest elongation accompanying oxidation in moieties of monogalactosyldiacylglycerol, a lipid typically localized to the chloroplast. Oxidative stress also induced a pronounced reallocation of lipidome peak area to triacylglycerols. LOBSTAHS can be used with environmental or experimental data from a variety of systems and is freely available at https://github.com/vanmooylipidomics/LOBSTAHS .
Asunto(s)
Biomarcadores/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Lípidos/análisis , Oxilipinas/análisis , Biomarcadores/química , Biomarcadores/metabolismo , Cromatografía Liquida , Bases de Datos de Compuestos Químicos/estadística & datos numéricos , Diatomeas/química , Peróxido de Hidrógeno/efectos adversos , Isomerismo , Metabolismo de los Lípidos , Lípidos/química , Espectrometría de Masas , Estrés Oxidativo/efectos de los fármacos , Oxilipinas/química , Oxilipinas/metabolismoRESUMEN
Nutrient availability is an important factor controlling phytoplankton productivity. Phytoplankton contribute c. 50% of the global photosynthesis and possess efficient acclimation mechanisms to cope with nutrient stress. We investigate the cellular response of the bloom-forming coccolithophore Emiliania huxleyi to phosphorus (P) scarcity, which is often a limiting factor in marine ecosystems. We combined mass spectrometry, fluorescence microscopy, transmission electron microscopy (TEM) and gene expression analyses in order to assess diverse cellular features in cells exposed to P limitation and recovery. Early starvation-induced substitution of phospholipids in the cells' membranes with galacto- and betaine lipids. Lipid remodeling was rapid and reversible upon P resupply. The PI3K inhibitor wortmannin reduced phospholipid substitution, suggesting a possible involvement of PI3K- signaling in this process. In addition, P limitation enhanced the formation and acidification of membrane vesicles in the cytoplasm. Intracellular vesicles may facilitate the recycling of cytoplasmic content, which is engulfed in the vesicles and delivered to the main vacuole. Long-term starvation was characterized by a profound increase in cell size and morphological alterations in cellular ultrastructure. This study provides cellular and molecular basis for future ecophysiological assessment of natural E. huxleyi populations in oligotrophic regions.
Asunto(s)
Endocitosis , Haptophyta/metabolismo , Fósforo/deficiencia , Fosfatasa Alcalina/metabolismo , Androstadienos/farmacología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Vesículas Citoplasmáticas/efectos de los fármacos , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Endocitosis/efectos de los fármacos , Haptophyta/citología , Haptophyta/efectos de los fármacos , Haptophyta/ultraestructura , Lípidos/química , Modelos Biológicos , WortmaninaRESUMEN
Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.
Asunto(s)
Metabolismo de los Lípidos , Lípidos/química , Fósforo/deficiencia , Fitoplancton/metabolismo , Agua de Mar/química , Carbono/análisis , Lípidos de la Membrana/química , Nitrógeno/análisis , Nitrógeno/metabolismo , Océanos y Mares , Fosfatos/metabolismo , Fosfolípidos/biosíntesis , Fósforo/análisis , Agua de Mar/microbiología , Synechococcus/química , Synechococcus/metabolismoRESUMEN
Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host-virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the "arms race" between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi-EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host-virus interactions in natural systems.
Asunto(s)
Linaje de la Célula , Haptophyta/citología , Haptophyta/virología , Interacciones Huésped-Patógeno/fisiología , Phycodnaviridae/fisiología , Biopolímeros/biosíntesis , Caspasas/metabolismo , Activación Enzimática , Eutrofización , Haptophyta/enzimología , Noruega , Fracciones Subcelulares/virología , Factores de TiempoRESUMEN
Quantitative information regarding the endmember composition of the gas and oil that flowed from the Macondo well during the Deepwater Horizon oil spill is essential for determining the oil flow rate, total oil volume released, and trajectories and fates of hydrocarbon components in the marine environment. Using isobaric gas-tight samplers, we collected discrete samples directly above the Macondo well on June 21, 2010, and analyzed the gas and oil. We found that the fluids flowing from the Macondo well had a gas-to-oil ratio of 1,600 standard cubic feet per petroleum barrel. Based on the measured endmember gas-to-oil ratio and the Federally estimated net liquid oil release of 4.1 million barrels, the total amount of C(1)-C(5) hydrocarbons released to the water column was 1.7 10(11) g. The endmember gas and oil compositions then enabled us to study the fractionation of petroleum hydrocarbons in discrete water samples collected in June 2010 within a southwest trending hydrocarbon-enriched plume of neutrally buoyant water at a water depth of 1,100 m. The most abundant petroleum hydrocarbons larger than C(1)-C(5) were benzene, toluene, ethylbenzene, and total xylenes at concentrations up to 78 µg L(-1). Comparison of the endmember gas and oil composition with the composition of water column samples showed that the plume was preferentially enriched with water-soluble components, indicating that aqueous dissolution played a major role in plume formation, whereas the fates of relatively insoluble petroleum components were initially controlled by other processes.