Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 140(33): 10488-10496, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30040404

RESUMEN

Molecular assemblies in metal-organic frameworks (MOFs) are reminiscent of natural light-harvesting (LH) systems and considered as emerging materials for energy conversion. Such applications require understanding the correlation between their excited-state properties and underlying topological net. Two chemically identical but topologically different tetraphenylpyrene (1,3,6,8-tetrakis( p-benzoicacid)pyrene; H4TBAPy)-based ZrIV MOFs, NU-901 ( scu) and NU-1000 ( csq), are chosen to computationally and spectroscopically interrogate the impact of topological difference on their excited-state electronic structures. Time-dependent density functional theory-computed transition density matrices for selected model compounds reveal that the optically relevant S1, S2, and S n states are delocalized over more than four TBAPy linkers with a maximum exciton size of ∼1.7 nm (i.e., two neighboring TBAPy linkers). Computational data further suggests the evolution of polar excitons (hole and electron residing in two different linkers); their oscillator strengths vary with the extent of interchromophoric interaction depending on their topological network. Femtosecond transient absorption (fs-TA) spectroscopic data of NU-901 highlight instantaneous spectral evolution of an intense S1 → S n transition at 750 nm, which diminishes with the emergence of a broad (580-1100 nm) induced absorption originating from a fast excimer formation. Although these ultrafast spectroscopic data reveal the first direct spectral observation of fast excimer formation (τ = 2 ps) in MOFs, the fs-TA features seen in NU-901 are clearly absent in NU-1000 and the free H4TBAPy linker. Furthermore, transient and steady-state fluorescence data collected as a function of solvent dielectrics reveal that the emissive states in both MOF samples are electronically nonpolar; however, low-lying polar excited states may get involved in the excited-state decay processes in polar solvents. The present work shows that the topological arrangement of the linkers critically controls the excited-state electronic structures.

2.
J Am Chem Soc ; 140(8): 2756-2760, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29421871

RESUMEN

Metal-organic frameworks (MOFs) are emerging materials for electro- and photo-chemical applications, where an understanding of the underlying charge-transfer (CT) process will facilitate designing new materials. However, the involvement of counterions in traditional electrochemical experiments complicates the probe on the role of various components during a CT event. A CT reaction between photoexcited MOF linker and a node-anchored ferrocene, within mesoporous framework NU-1000, was spectroscopically probed without the involvement of electrolyte based counterions. Dielectric dependent CT kinetics indicate that the process involves a high reorganization energy that is required to polarize the node bound hydroxyl/aqua ligands. The findings have clear implication on the design of MOF-based electrocatalysis and photoelectrochemical devices.

3.
Biol Reprod ; 84(3): 455-65, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20980687

RESUMEN

The homeodomain CUX1 protein exists as multiple isoforms that arise from proteolytic processing of a 200-kDa protein or an alternate splicing or from the use of an alternate promoter. The 200-kDa CUX1 protein is highly expressed in the developing kidney, where it functions to regulate cell proliferation. Transgenic mice ectopically expressing the 200-kDa CUX1 protein develop renal hyperplasia associated with reduced expression of the cyclin kinase inhibitor p27. A 55-kDa CUX1 isoform is expressed exclusively in the testes. We determined the pattern and timing of CUX1 protein expression in developing testes. CUX1 expression was continuous in Sertoli cells from prepubertal testes but became cyclic when spermatids appeared. In testes from mature mice, CUX1 was highly expressed only in round spermatids at stages IV-V of spermatogenesis, in both spermatids and Sertoli cells at stages VI-X of spermatogenesis, and only in Sertoli cells at stage XI of spermatogenesis. While most of the seminiferous tubules in wild-type mice were between stages VI and X of spermatogenesis, there was a significant reduction in the percentage of seminiferous tubules between stages VI and X in Cux1 transgenic mice and a significant increase in the percentage of seminiferous tubules in stages IV-V and XI. Moreover, CUX1 was not expressed in proliferating cells in testes from either wild-type or transgenic mice. Thus, unlike the somatic form of CUX1, which has a role in cell proliferation, the testis-specific form of CUX1 is not involved in cell division and appears to play a role in signaling between Sertoli cells and spermatids.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Animales , Comunicación Celular/genética , Comunicación Celular/fisiología , División Celular/genética , División Celular/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Células de Sertoli/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Espermátides/fisiología , Espermatogénesis/fisiología , Testículo/citología , Testículo/metabolismo , Testículo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA