Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 23(1): 67, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164669

RESUMEN

Quantitative trait locus (QTL) analysis allows to identify regions responsible for a trait and to associate alleles with their effect on phenotypes. When using biallelic markers to find these QTL regions, two alleles per QTL are modelled. This assumption might be close to reality in specific biparental crosses but is unrealistic in situations where broader genetic diversity is studied. Diversity panels used in genome-wide association studies or multi-parental populations can easily harbour multiple QTL alleles at each locus, more so in the case of polyploids that carry more than two alleles per individual. In such situations a multiallelic model would be closer to reality, allowing for different genetic effects for each potential allele in the population. To obtain such multiallelic markers we propose the usage of haplotypes, concatenations of nearby SNPs. We developed "mpQTL" an R package that can perform a QTL analysis at any ploidy level under biallelic and multiallelic models, depending on the marker type given. We tested the effect of genetic diversity on the power and accuracy difference between bi-allelic and multiallelic models using a set of simulated multiparental autotetraploid, outbreeding populations. Multiallelic models had higher detection power and were more precise than biallelic, SNP-based models, particularly when genetic diversity was higher. This confirms that moving to multi-allelic QTL models can lead to improved detection and characterization of QTLs. KEY MESSAGE: QTL detection in populations with more than two functional QTL alleles (which is likely in multiparental and/or polyploid populations) is more powerful when using multiallelic models, rather than biallelic models.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico , Humanos , Modelos Genéticos , Fenotipo , Poliploidía
2.
BMC Genomics ; 22(1): 187, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726679

RESUMEN

BACKGROUND: Environmental adaptation and expanding harvest seasons are primary goals of most peach [Prunus persica (L.) Batsch] breeding programs. Breeding perennial crops is a challenging task due to their long breeding cycles and large tree size. Pedigree-based analysis using pedigreed families followed by haplotype construction creates a platform for QTL and marker identification, validation, and the use of marker-assisted selection in breeding programs. RESULTS: Phenotypic data of seven F1 low to medium chill full-sib families were collected over 2 years at two locations and genotyped using the 9 K SNP Illumina array. Three QTLs were discovered for bloom date (BD) and mapped on linkage group 1 (LG1) (172-182 cM), LG4 (48-54 cM), and LG7 (62-70 cM), explaining 17-54%, 11-55%, and 11-18% of the phenotypic variance, respectively. The QTL for ripening date (RD) and fruit development period (FDP) on LG4 was co-localized at the central part of LG4 (40-46 cM) and explained between 40 and 75% of the phenotypic variance. Haplotype analyses revealed SNP haplotypes and predictive SNP marker(s) associated with desired QTL alleles and the presence of multiple functional alleles with different effects for a single locus for RD and FDP. CONCLUSIONS: A multiple pedigree-linked families approach validated major QTLs for the three key phenological traits which were reported in previous studies across diverse materials, geographical distributions, and QTL mapping methods. Haplotype characterization of these genomic regions differentiates this study from the previous QTL studies. Our results will provide the peach breeder with the haplotypes for three BD QTLs and one RD/FDP QTL to create predictive DNA-based molecular marker tests to select parents and/or seedlings that have desired QTL alleles and cull unwanted genotypes in early seedling stages.


Asunto(s)
Prunus persica , Linaje , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Prunus persica/genética , Sitios de Carácter Cuantitativo
3.
BMC Genomics ; 22(1): 246, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827434

RESUMEN

BACKGROUND: Single nucleotide polymorphism (SNP) array technology has been increasingly used to generate large quantities of SNP data for use in genetic studies. As new arrays are developed to take advantage of new technology and of improved probe design using new genome sequence and panel data, a need to integrate data from different arrays and array platforms has arisen. This study was undertaken in view of our need for an integrated high-quality dataset of Illumina Infinium® 20 K and Affymetrix Axiom® 480 K SNP array data in apple (Malus × domestica). In this study, we qualify and quantify the compatibility of SNP calling, defined as SNP calls that are both accurate and concordant, across both arrays by two approaches. First, the concordance of SNP calls was evaluated using a set of 417 duplicate individuals genotyped on both arrays starting from a set of 10,295 robust SNPs on the Infinium array. Next, the accuracy of the SNP calls was evaluated on additional germplasm (n = 3141) from both arrays using Mendelian inconsistent and consistent errors across thousands of pedigree links. While performing this work, we took the opportunity to evaluate reasons for probe failure and observed discordant SNP calls. RESULTS: Concordance among the duplicate individuals was on average of 97.1% across 10,295 SNPs. Of these SNPs, 35% had discordant call(s) that were further curated, leading to a final set of 8412 (81.7%) SNPs that were deemed compatible. Compatibility was highly influenced by the presence of alternate probe binding locations and secondary polymorphisms. The impact of the latter was highly influenced by their number and proximity to the 3' end of the probe. CONCLUSIONS: The Infinium and Axiom SNP array data were mostly compatible. However, data integration required intense data filtering and curation. This work resulted in a workflow and information that may be of use in other data integration efforts. Such an in-depth analysis of array concordance and accuracy as ours has not been previously described in the literature and will be useful in future work on SNP array data integration and interpretation, and in probe/platform development.


Asunto(s)
Malus , Genoma , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Malus/genética , Polimorfismo de Nucleótido Simple
4.
Planta ; 253(2): 63, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33544231

RESUMEN

MAIN CONCLUSION: Karyotyping using high-density genome-wide SNP markers identified various chromosomal aberrations in oil palm (Elaeis guineensis Jacq.) with supporting evidence from the 2C DNA content measurements (determined using FCM) and chromosome counts. Oil palm produces a quarter of the world's total vegetable oil. In line with its global importance, an initiative to sequence the oil palm genome was carried out successfully, producing huge amounts of sequence information, allowing SNP discovery. High-capacity SNP genotyping platforms have been widely used for marker-trait association studies in oil palm. Besides genotyping, a SNP array is also an attractive tool for understanding aberrations in chromosome inheritance. Exploiting this, the present study utilized chromosome-wide SNP allelic distributions to determine the ploidy composition of over 1,000 oil palms from a commercial F1 family, including 197 derived from twin-embryo seeds. Our method consisted of an inspection of the allelic intensity ratio using SNP markers. For palms with a shifted or abnormal distribution ratio, the SNP allelic frequencies were plotted along the pseudo-chromosomes. This method proved to be efficient in identifying whole genome duplication (triploids) and aneuploidy. We also detected several loss of heterozygosity regions which may indicate small chromosomal deletions and/or inheritance of identical by descent regions from both parents. The SNP analysis was validated by flow cytometry and chromosome counts. The triploids were all derived from twin-embryo seeds. This is the first report on the efficiency and reliability of SNP array data for karyotyping oil palm chromosomes, as an alternative to the conventional cytogenetic technique. Information on the ploidy composition and chromosomal structural variation can help to better understand the genetic makeup of samples and lead to a more robust interpretation of the genomic data in marker-trait association analyses.


Asunto(s)
Arecaceae , Aberraciones Cromosómicas , Repeticiones de Microsatélite , Ploidias , Arecaceae/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados
5.
BMC Genomics ; 21(1): 522, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727362

RESUMEN

BACKGROUND: Fruit quality traits have a significant effect on consumer acceptance and subsequently on peach (Prunus persica (L.) Batsch) consumption. Determining the genetic bases of key fruit quality traits is essential for the industry to improve fruit quality and increase consumption. Pedigree-based analysis across multiple peach pedigrees can identify the genomic basis of complex traits for direct implementation in marker-assisted selection. This strategy provides breeders with better-informed decisions and improves selection efficiency and, subsequently, saves resources and time. RESULTS: Phenotypic data of seven F1 low to medium chill full-sib families were collected over 2 years at two locations and genotyped using the 9 K SNP Illumina array. One major QTL for fruit blush was found on linkage group 4 (LG4) at 40-46 cM that explained from 20 to 32% of the total phenotypic variance and showed three QTL alleles of different effects. For soluble solids concentration (SSC), one QTL was mapped on LG5 at 60-72 cM and explained from 17 to 39% of the phenotypic variance. A major QTL for titratable acidity (TA) co-localized with the major locus for low-acid fruit (D-locus). It was mapped at the proximal end of LG5 and explained 35 to 80% of the phenotypic variance. The new QTL for TA on the distal end of LG5 explained 14 to 22% of the phenotypic variance. This QTL co-localized with the QTL for SSC and affected TA only when the first QTL is homozygous for high acidity (epistasis). Haplotype analyses revealed SNP haplotypes and predictive SNP marker(s) associated with desired QTL alleles. CONCLUSIONS: A multi-family-based QTL discovery approach enhanced the ability to discover a new TA QTL at the distal end of LG5 and validated other QTLs which were reported in previous studies. Haplotype characterization of the mapped QTLs distinguishes this work from the previous QTL studies. Identified predictive SNPs and their original sources will facilitate the selection of parents and/or seedlings that have desired QTL alleles. Our findings will help peach breeders develop new predictive, DNA-based molecular marker tests for routine use in marker-assisted breeding.


Asunto(s)
Prunus persica , Mapeo Cromosómico , Frutas/genética , Humanos , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Prunus persica/genética , Sitios de Carácter Cuantitativo
6.
Plant Biotechnol J ; 17(2): 397-409, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29992702

RESUMEN

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Myrica/genética , Mapeo Cromosómico , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Marcadores Genéticos/genética , Anotación de Secuencia Molecular , Myrica/crecimiento & desarrollo , Myrica/fisiología , Especificidad de Órganos , Fitomejoramiento
7.
Plant J ; 86(1): 62-74, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26919684

RESUMEN

Cultivated apple (Malus × domestica Borkh.) is one of the most important fruit crops in temperate regions, and has great economic and cultural value. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid linkage disequilibrium decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. The SNPs were chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359 994 or 74%) fell in the stringent class of poly high resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple.


Asunto(s)
Genoma de Planta/genética , Técnicas de Genotipaje/métodos , Malus/genética , Polimorfismo de Nucleótido Simple/genética , Mapeo Cromosómico , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos
8.
BMC Genomics ; 18(1): 404, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28583082

RESUMEN

BACKGROUND: Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. RESULTS: Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. CONCLUSIONS: The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality.


Asunto(s)
Cruzamiento , Prunus persica/genética , Sitios de Carácter Cuantitativo/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genotipo , Polimorfismo de Nucleótido Simple , Probabilidad , Prunus persica/crecimiento & desarrollo , Solubilidad
9.
J Exp Bot ; 68(7): 1451-1466, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338805

RESUMEN

Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer's appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties.


Asunto(s)
Frutas/genética , Estudio de Asociación del Genoma Completo , Malus/genética , Familia de Multigenes , Sitios de Carácter Cuantitativo , Frutas/fisiología , Genotipo , Malus/fisiología , Fenotipo
10.
Bioinformatics ; 31(23): 3873-4, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249809

RESUMEN

UNLABELLED: ASSIsT (Automatic SNP ScorIng Tool) is a user-friendly customized pipeline for efficient calling and filtering of SNPs from Illumina Infinium arrays, specifically devised for custom genotyping arrays. Illumina has developed an integrated software for SNP data visualization and inspection called GenomeStudio (GS). ASSIsT builds on GS-derived data and identifies those markers that follow a bi-allelic genetic model and show reliable genotype calls. Moreover, ASSIsT re-edits SNP calls with null alleles or additional SNPs in the probe annealing site. ASSIsT can be employed in the analysis of different population types such as full-sib families and mating schemes used in the plant kingdom (backcross, F1, F2), and unrelated individuals. The final result can be directly exported in the format required by the most common software for genetic mapping and marker-trait association analysis. ASSIsT is developed in Python and runs in Windows and Linux. AVAILABILITY AND IMPLEMENTATION: The software, example data sets and tutorials are freely available at http://compbiotoolbox.fmach.it/assist/. CONTACT: eric.vandeweg@wur.nl.


Asunto(s)
Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple , Programas Informáticos , Alelos , Animales , Humanos
11.
J Exp Bot ; 67(9): 2875-88, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27034326

RESUMEN

In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase.


Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas/genética , Malus/genética , Flores/genética , Genes de Plantas/fisiología , Haplotipos/genética , Malus/crecimiento & desarrollo , Malus/fisiología , Linaje , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo
12.
BMC Genomics ; 16: 394, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25986380

RESUMEN

BACKGROUND: Chinese bayberry (Myrica rubra Sieb. & Zucc.) is an important subtropical evergreen fruit tree in southern China. Generally dioecious, the female plants are cultivated for fruit and have been studied extensively, but male plants have received very little attention. Knowledge of males may have a major impact on conservation and genetic improvement as well as on breeding. Using 84 polymorphic SSRs, we genotyped 213 M. rubra individuals (99 male individuals, 113 female varieties and 1 monoecious) and compared the difference in genetic diversity between the female and the male populations. RESULTS: Neighbour-joining cluster analysis separated M. rubra from three related species, and the male from female populations within M. rubra. By structure analysis, 178 M. rubra accessions were assigned to two subpopulations: Male dominated (98) and Female dominated (80). The well-known cultivars 'Biqi' and 'Dongkui', and the landraces 'Fenhong' are derived from three different gene pools. Female population had a slightly higher values of genetic diversity parameters (such as number of alleles and heterozygosity) than the male population, but not significantly different. The SSR loci ZJU062 and ZJU130 showed an empirical Fst value of 0.455 and 0.333, respectively, which are significantly above the 95 % confidence level, indicating that they are outlier loci related to sex separation. CONCLUSION: The male and female populations of Chinese bayberry have similar genetic diversity in terms of average number of alleles and level of heterozygosity, but were clearly separated by genetic structure analysis due to two markers associated with sex type, ZJU062 and ZJU130. Zhejiang Province China could be the centre of diversity of M. rubra in China, with wide genetic diversity coverage; and the two representative cultivars 'Biqi' and 'Dongkui', and one landrace 'Fenhong' in three female subpopulations. This research provides genetic information on male and female Chinese bayberry and will act as a reference for breeding programs.


Asunto(s)
Marcadores Genéticos/genética , Variación Genética , Genoma de Planta , Myrica/genética , Alelos , Teorema de Bayes , Cruzamiento , China , Análisis por Conglomerados , Frutas/genética , Sitios Genéticos , Genotipo , Heterocigoto , Repeticiones de Microsatélite/genética , Myrica/clasificación , Filogenia , Polimorfismo Genético
13.
BMC Genomics ; 16: 155, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25886969

RESUMEN

BACKGROUND: A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. RESULTS: About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. CONCLUSIONS: The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.


Asunto(s)
Fragaria/genética , Técnicas de Genotipaje/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Poliploidía , Mapeo Cromosómico , Hibridación Genética , Mutación INDEL , Análisis de Secuencia de ADN
14.
BMC Plant Biol ; 14: 55, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24581289

RESUMEN

BACKGROUND: Breeders in the allo-octoploid strawberry currently make little use of molecular marker tools. As a first step of a QTL discovery project on fruit quality traits and resistance to soil-borne pathogens such as Phytophthora cactorum and Verticillium we built a genome-wide SSR linkage map for the cross Holiday x Korona. We used the previously published MADCE method to obtain full haplotype information for both of the parental cultivars, facilitating in-depth studies on their genomic organisation. RESULTS: The linkage map incorporates 508 segregating loci and represents each of the 28 chromosome pairs of octoploid strawberry, spanning an estimated length of 2050 cM. The sub-genomes are denoted according to their sequence divergence from F. vesca as revealed by marker performance. The map revealed high overall synteny between the sub-genomes, but also revealed two large inversions on LG2C and LG2D, of which the latter was confirmed using a separate mapping population. We discovered interesting breeding features within the parental cultivars by in-depth analysis of our haplotype data. The linkage map-derived homozygosity level of Holiday was similar to the pedigree-derived inbreeding level (33% and 29%, respectively). For Korona we found that the observed homozygosity level was over three times higher than expected from the pedigree (13% versus 3.6%). This could indicate selection pressure on genes that have favourable effects in homozygous states. The level of kinship between Holiday and Korona derived from our linkage map was 2.5 times higher than the pedigree-derived value. This large difference could be evidence of selection pressure enacted by strawberry breeders towards specific haplotypes. CONCLUSION: The obtained SSR linkage map provides a good base for QTL discovery. It also provides the first biologically relevant basis for the discernment and notation of sub-genomes. For the first time, we revealed genomic rearrangements that were verified in a separate mapping population. We believe that haplotype information will become increasingly important in identifying marker-trait relationships and regions that are under selection pressure within breeding material. Our attempt at providing a biological basis for the discernment of sub-genomes warrants follow-up studies to streamline the naming of the sub-genomes among different octoploid strawberry maps.


Asunto(s)
Fragaria/genética , Alelos , Cruzamiento , Mapeo Cromosómico , Ligamiento Genético/genética , Haplotipos/genética , Sitios de Carácter Cuantitativo/genética
15.
Front Genet ; 14: 1049988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936433

RESUMEN

Linkage mapping is an approach to order markers based on recombination events. Mapping algorithms cannot easily handle genotyping errors, which are common in high-throughput genotyping data. To solve this issue, strategies have been developed, aimed mostly at identifying and eliminating these errors. One such strategy is SMOOTH, an iterative algorithm to detect genotyping errors. Unlike other approaches, SMOOTH can also be used to impute the most probable alternative genotypes, but its application is limited to diploid species and to markers heterozygous in only one of the parents. In this study we adapted SMOOTH to expand its use to any marker type and to autopolyploids with the use of identity-by-descent probabilities, naming the updated algorithm Smooth Descent (SD). We applied SD to real and simulated data, showing that in the presence of genotyping errors this method produces better genetic maps in terms of marker order and map length. SD is particularly useful for error rates between 5% and 20% and when error rates are not homogeneous among markers or individuals. With a starting error rate of 10%, SD reduced it to ∼5% in diploids, ∼7% in tetraploids and ∼8.5% in hexaploids. Conversely, the correlation between true and estimated genetic maps increased by 0.03 in tetraploids and by 0.2 in hexaploids, while worsening slightly in diploids (∼0.0011). We also show that the combination of genotype curation and map re-estimation allowed us to obtain better genetic maps while correcting wrong genotypes. We have implemented this algorithm in the R package Smooth Descent.

16.
BMC Genomics ; 13: 201, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22621340

RESUMEN

BACKGROUND: Chinese bayberry (Myrica rubra Sieb. and Zucc.) is a subtropical evergreen tree originating in China. It has been cultivated in southern China for several thousand years, and annual production has reached 1.1 million tons. The taste and high level of health promoting characters identified in the fruit in recent years has stimulated its extension in China and introduction to Australia. A limited number of co-dominant markers have been developed and applied in genetic diversity and identity studies. Here we report, for the first time, a survey of whole genome shotgun data to develop a large number of simple sequence repeat (SSR) markers to analyse the genetic diversity of the common cultivated Chinese bayberry and the relationship with three other Myrica species. RESULTS: The whole genome shotgun survey of Chinese bayberry produced 9.01Gb of sequence data, about 26x coverage of the estimated genome size of 323 Mb. The genome sequences were highly heterozygous, but with little duplication. From the initial assembled scaffold covering 255 Mb sequence data, 28,602 SSRs (≥5 repeats) were identified. Dinucleotide was the most common repeat motif with a frequency of 84.73%, followed by 13.78% trinucleotide, 1.34% tetranucleotide, 0.12% pentanucleotide and 0.04% hexanucleotide. From 600 primer pairs, 186 polymorphic SSRs were developed. Of these, 158 were used to screen 29 Chinese bayberry accessions and three other Myrica species: 91.14%, 89.87% and 46.84% SSRs could be used in Myrica adenophora, Myrica nana and Myrica cerifera, respectively. The UPGMA dendrogram tree showed that cultivated Myrica rubra is closely related to Myrica adenophora and Myrica nana, originating in southwest China, and very distantly related to Myrica cerifera, originating in America. These markers can be used in the construction of a linkage map and for genetic diversity studies in Myrica species. CONCLUSION: Myrica rubra has a small genome of about 323 Mb with a high level of heterozygosity. A large number of SSRs were identified, and 158 polymorphic SSR markers developed, 91% of which can be transferred to other Myrica species.


Asunto(s)
Genoma de Planta , Repeticiones de Microsatélite , Myrica/genética , Secuencia de Bases , China , Análisis por Conglomerados , Evolución Molecular , Etiquetas de Secuencia Expresada , Polimorfismo Genético
17.
BMC Plant Biol ; 12: 25, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22340438

RESUMEN

BACKGROUND: Genetic studies in allopolyploid plants are challenging because of the presence of similar sub-genomes, which leads to multiple alleles and complex segregation ratios. In this study, we describe a novel method for establishing the exact dose and configuration of microsatellite alleles for any accession of an allopolyploid plant species. The method, named Microsatellite Allele Dose and Configuration Establishment (MADCE), can be applied to mapping populations and pedigreed (breeding) germplasm in allopolyploids. RESULTS: Two case studies are presented to demonstrate the power and robustness of the MADCE method. In the mapping case, five microsatellites were analysed. These microsatellites amplified 35 different alleles based on size. Using MADCE, we uncovered 30 highly informative segregating alleles. A conventional approach would have yielded only 19 fully informative and six partially informative alleles. Of the ten alleles that were present in all progeny (and thereby ignored or considered homozygous when using conventional approaches), six were found to segregate by dosage when analysed with MADCE. Moreover, the full allelic configuration of the mapping parents could be established, including null alleles, homozygous loci, and alleles that were present on multiple homoeologues. In the second case, 21 pedigreed cultivars were analysed using MADCE, resulting in the establishment of the full allelic configuration for all 21 cultivars and a tracing of allele flow over multiple generations. CONCLUSIONS: The procedure described in this study (MADCE) enhances the efficiency and information content of mapping studies in allopolyploids. More importantly, it is the first technique to allow the determination of the full allelic configuration in pedigreed breeding germplasm from allopolyploid plants. This enables pedigree-based marker-trait association studies the use of algorithms developed for diploid crops, and it may increase the effectiveness of LD-based association studies. The MADCE method therefore enables researchers to tackle many of the genotyping problems that arise when performing mapping, pedigree, and association studies in allopolyploids. We discuss the merits of MADCE in comparison to other marker systems in polyploids, including SNPs, and how MADCE could aid in the development of SNP markers in allopolyploids.


Asunto(s)
Repeticiones de Microsatélite/genética , Poliploidía , Alelos , Genotipo , Polimorfismo de Nucleótido Simple/genética
18.
J Exp Bot ; 63(8): 2895-908, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22330898

RESUMEN

Apple (Malus×domestica Borkh) is among the main sources of phenolic compounds in the human diet. The genetic basis of the quantitative variations of these potentially beneficial phenolic compounds was investigated. A segregating F1 population was used to map metabolite quantitative trait loci (mQTLs). Untargeted metabolic profiling of peel and flesh tissues of ripe fruits was performed using liquid chromatography-mass spectrometry (LC-MS), resulting in the detection of 418 metabolites in peel and 254 in flesh. In mQTL mapping using MetaNetwork, 669 significant mQTLs were detected: 488 in the peel and 181 in the flesh. Four linkage groups (LGs), LG1, LG8, LG13, and LG16, were found to contain mQTL hotspots, mainly regulating metabolites that belong to the phenylpropanoid pathway. The genetics of annotated metabolites was studied in more detail using MapQTL®. A number of quercetin conjugates had mQTLs on LG1 or LG13. The most important mQTL hotspot with the largest number of metabolites was detected on LG16: mQTLs for 33 peel-related and 17 flesh-related phenolic compounds. Structural genes involved in the phenylpropanoid biosynthetic pathway were located, using the apple genome sequence. The structural gene leucoanthocyanidin reductase (LAR1) was in the mQTL hotspot on LG16, as were seven transcription factor genes. The authors believe that this is the first time that a QTL analysis was performed on such a high number of metabolites in an outbreeding plant species.


Asunto(s)
Frutas/genética , Frutas/metabolismo , Ligamiento Genético , Malus/genética , Malus/metabolismo , Fenoles/metabolismo , Sitios de Carácter Cuantitativo/genética , Arabidopsis/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Genes de Plantas/genética , Genotipo , Humanos , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética , Factores de Transcripción/genética
19.
Hortic Res ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043196

RESUMEN

Unordered parent-offspring (PO) relationships are an outstanding issue in pedigree reconstruction studies. Resolution of the order of these relationships would expand the results, conclusions, and usefulness of such studies; however, no such PO order resolution (POR) tests currently exist. This study describes two such tests, demonstrated using SNP array data in the outcrossing species apple (Malus × domestica) on a PO relationship of known order ("Keepsake" as a parent of "Honeycrisp") and two PO relationships previously ordered only via provenance information. The first test, POR-1, tests whether some of the extended haplotypes deduced from homozygous SNP calls from one individual in an unordered PO duo are composed of recombinant haplotypes from accurately phased SNP genotypes from the second individual. If so, the first individual would be the offspring of the second individual, otherwise the opposite relationship would be present. The second test, POR-2, does not require phased SNP genotypes and uses similar logic as the POR-1 test, albeit in a different approach. The POR-1 and POR-2 tests determined the correct relationship between "Keepsake" and "Honeycrisp". The POR-2 test confirmed "Reinette Franche" as a parent of "Nonpareil" and "Brabant Bellefleur" as a parent of "Court Pendu Plat". The latter finding conflicted with the recorded provenance information, demonstrating the need for these tests. The successful demonstration of these tests suggests they can add insights to future pedigree reconstruction studies, though caveats, like extreme inbreeding or selfing, would need to be considered where relevant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA