Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Intervirology ; 62(3-4): 134-144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31533107

RESUMEN

OBJECTIVES: Differences have been observed in the susceptibility of macrophage cell lines to respiratory syncytial virus (RSV) infection. In this study, we evaluated whether the type of macrophage cell line and RSV strain used have an influence on the infectivity and production of progeny virus. METHODS: Both human and murine macrophage-like cell lines were infected with different RSV strains, both lab strains as well as clinical isolates. The infection was evaluated after 24 and 72 h by immunofluorescence staining and microscopic analysis, and the production of new virus particles was determined by plaque assay. RESULTS: Susceptibility of macrophages to RSV was influenced by the RSV strain used but was mostly dependent on the macrophage cell line. Numbers of infected cells and virus production were generally very low or absent in murine cell lines. In human cell lines, clear infection was observed associated with production of new virus particles. CONCLUSION: Differences in susceptibility of macrophage cell lines to RSV infection are primarily related to the species of origin of the cell line but are also influenced by the RSV strain.


Asunto(s)
Especificidad del Huésped , Macrófagos/virología , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Replicación Viral , Animales , Línea Celular , Humanos , Ratones , Carga Viral , Ensayo de Placa Viral
2.
Virol J ; 14(1): 157, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818113

RESUMEN

BACKGROUND: Host proteases have been shown to play important roles in many viral activities such as entry, uncoating, viral protein production and disease induction. Therefore, these cellular proteases are putative targets for the development of antivirals that inhibit their activity. Host proteases have been described to play essential roles in Ebola, HCV, HIV and influenza, such that specific protease inhibitors are able to reduce infection. RSV utilizes a host protease in its replication cycle but its potential as antiviral target is unknown. Therefore, we evaluated the effect of protease inhibitors on RSV infection. METHODS: To measure the sensitivity of RSV infection to protease inhibitors, cells were infected with RSV and incubated for 18 h in the presence or absence of the inhibitors. Cells were fixed, stained and studied using fluorescence microscopy. RESULTS: Several protease inhibitors, representing different classes of proteases (AEBSF, Pepstatin A, E-64, TPCK, PMSF and aprotinin), were tested for inhibitory effects on an RSV A2 infection of HEp-2 cells. Different treatment durations, ranging from 1 h prior to inoculation and continuing for 18 h during the assay, were evaluated. Of all the inhibitors tested, AEBSF and TPCK significantly decreased RSV infection. To ascertain that the observed effect of AEBSF was not a specific feature related to HEp-2 cells, A549 and BEAS-2B cells were also used. Similar to HEp-2, an almost complete block in the number of RSV infected cells after 18 h of incubation was observed and the effect was dose-dependent. To gain insight into the mechanism of this inhibition, AEBSF treatment was applied during different phases of an infection cycle (pre-, peri- and post-inoculation treatment). The results from these experiments indicate that AEBSF is mainly active during the early entry phase of RSV. The inhibitory effect was also observed with other RSV isolates A1998/3-2 and A2000/3-4, suggesting that this is a general feature of RSV. CONCLUSION: RSV infection can be inhibited by broad serine protease inhibitors, AEBSF and TPCK. We confirmed that AEBSF inhibition is independent of the cell line used or RSV strain. The time point at which treatment with the inhibitor was most potent, was found to coincide with the expected moment of entry of the virion with the host cell.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/patogenicidad , Inhibidores de Serina Proteinasa/farmacología , Sulfonas/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Células A549 , Aprotinina/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Endopeptidasas/efectos de los fármacos , Humanos , Cinética , Leucina/análogos & derivados , Leucina/antagonistas & inhibidores , Pepstatinas/antagonistas & inhibidores , Factores de Tiempo , Clorometilcetona de Tosilfenilalanila/antagonistas & inhibidores , Proteínas Virales/metabolismo
3.
Microbiol Spectr ; 11(3): e0436822, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37212711

RESUMEN

The respiratory syncytial virus (RSV) represents the leading cause of viral lower respiratory tract infections (LRTI) in children worldwide and is associated with significant morbidity and mortality rates. The clinical picture of an RSV infection differs substantially between patients, and the role of viral co-infections is poorly investigated. During two consecutive winter seasons from October 2018 until February 2020, we prospectively included children up to 2 years old presenting with an acute LRTI, both ambulatory and hospitalized. We collected clinical data and tested nasopharyngeal secretions for a panel of 16 different respiratory viruses with multiplex RT-qPCR. Disease severity was assessed with traditional clinical parameters and scoring systems. A total of 120 patients were included, of which 91.7% were RSV positive; 42.5% of RSV-positive patients had a co-infection with at least one other respiratory virus. We found that patients suffering from a single RSV infection had higher pediatric intensive care unit (PICU) admission rates (OR = 5.9, 95% CI = 1.53 to 22.74), longer duration of hospitalization (IRR = 1.25, 95% CI = 1.03 to 1.52), and a higher Bronchiolitis Risk of Admission Score (BRAS) (IRR = 1.31, 95% CI = 1.02 to 1.70) compared to patients with RSV co-infections. No significant difference was found in saturation on admission, O2 need, or ReSViNET-score. In our cohort, patients with a single RSV infection had increased disease severity compared to patients with RSV co-infections. This suggests that the presence of viral co-infections might influence the course of RSV bronchiolitis, but heterogeneity and small sample size in our study prevents us from drawing strong conclusions. IMPORTANCE RSV is worldwide the leading cause of serious airway infections. Up to 90% of children will be infected by the age of 2. RSV symptoms are mostly mild and typically mimic a common cold in older children and adolescents, but younger children can develop severe lower respiratory tract disease, and currently it is unclear why certain children develop severe disease while others do not. In this study, we found that children with a single RSV infection had a higher disease severity compared to patients with viral co-infections, suggesting that the presence of a viral co-infection could influence the course of an RSV bronchiolitis. As preventive and therapeutic options for RSV-associated disease are currently limited, this finding could potentially guide physicians to decide which patients might benefit from current or future treatment options early in the course of disease, and therefore, warrants further investigation.


Asunto(s)
Bronquiolitis , Coinfección , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virosis , Virus , Niño , Adolescente , Humanos , Lactante , Coinfección/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Bronquiolitis/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Factores de Riesgo
4.
Virus Res ; 266: 58-68, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31004621

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization worldwide each year and there is presently no licensed vaccine to prevent severe RSV infections. Two major RSV glycoproteins, attachment (G) and fusion (F) protein, regulate viral replication and both proteins contain potential glycosylation sites which are highly variable for the G protein and conserved for the F protein among virus isolates. The RSV F sequence possesses five N-glycosylation sites located in the F2 subunit (N27 and N70), the p27 peptide (N116 and N126) and the F1 subunit (N500). The importance of RSV F N-glycosylation in virus replication and immunogenicity is not yet fully understood, and a better understanding may provide new insights for vaccine development. By using a BAC-based reverse genetics system, recombinant viruses expressing F proteins with loss of N-glycosylation sites were made. Mutant viruses with single N-glycosylation sites removed could be recovered, while this was not possible with the mutant with all N-glycosylation sites removed. Although the individual RSV F N-glycosylation sites were shown not to be essential for viral replication, they do contribute to the efficiency of in vitro and in vivo viral infection. To evaluate the role of N-glycosylation sites on RSV F antigenicity, serum antibody titers were determined after infection of BALB/c mice with RSV expressing the glycomutant F proteins. Infection with recombinant virus lacking the N-glycosylation site at position N116 (RSV F N116Q) resulted in significant higher neutralizing antibody titers compared to RSV F WT infection, which is surprising since this N-glycan is present in the p27 peptide which is assumed to be absent from the mature F protein in virions. Thus, single or combined RSV F glycomutations which affect virus replication and fusogenicity, and which may induce enhanced antibody responses upon immunization could have the potential to improve the efficacy of RSV LAV approaches.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Virus Sincitial Respiratorio Humano/patogenicidad , Proteínas Virales de Fusión/metabolismo , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Células Gigantes/virología , Glicosilación , Humanos , Inmunización , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Mutación , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/inmunología , Células Vero , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología , Replicación Viral
5.
Viruses ; 11(11)2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698728

RESUMEN

Respiratory Syncytial Virus (RSV) is a very important viral pathogen in children, immunocompromised and cardiopulmonary diseased patients and the elderly. Most of the published research with RSV was performed on RSV Long and RSV A2, isolated in 1956 and 1961, yet recent RSV isolates differ from these prototype strains. Additionally, these viruses have been serially passaged in cell culture, which may result in adaptations that affect virus-host interactions. We have isolated RSV from mucosal secretions of 12 patients in the winters 2016-2017 and 2017-2018, of which eight RSV-A subtypes and four RSV-B subtypes. Passage 3 of the isolates was assessed for viral replication kinetics and infectious virus production in HEp-2, A549 and BEAS-2B cells, thermal stability at 37 °C, 32 °C and 4 °C, syncytia formation, neutralization by palivizumab and mucin mRNA expression in infected A549 cells. We observed that viruses isolated in one RSV season show differences on the tested assays. Furthermore, comparison with RSV A2 and RSV B1 reveals for some RSV isolates differences in viral replication kinetics, thermal stability and fusion capacity. Major differences are, however, not observed and differences between the recent isolates and reference strains is, overall, similar to the observed variation in between the recent isolates. One clinical isolate (BE/ANT-A11/17) replicated very efficiently in all cell lines, and remarkably, even better than RSV A2 in the HEp-2 cell line.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Células A549 , Bélgica/epidemiología , Bronquiolitis/virología , Línea Celular , Niño , Preescolar , Humanos , Mucinas/metabolismo , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Estaciones del Año , Replicación Viral
6.
Viruses ; 10(8)2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110893

RESUMEN

Prevention of severe lower respiratory tract infections in infants caused by the human respiratory syncytial virus (hRSV) remains a major public health priority. Currently, the major focus of vaccine development relies on the RSV fusion (F) protein since it is the main target protein for neutralizing antibodies induced by natural infection. The protein conserves 5 N-glycosylation sites, two of which are located in the F2 subunit (N27 and N70), one in the F1 subunit (N500) and two in the p27 peptide (N116 and N126). To study the influence of the loss of one or more N-glycosylation sites on RSV F immunogenicity, BALB/c mice were immunized with plasmids encoding RSV F glycomutants. In comparison with F WT DNA immunized mice, higher neutralizing titres were observed following immunization with F N116Q. Moreover, RSV A2-K-line19F challenge of mice that had been immunized with mutant F N116Q DNA was associated with lower RSV RNA levels compared with those in challenged WT F DNA immunized animals. Since p27 is assumed to be post-translationally released after cleavage and thus not present on the mature RSV F protein, it remains to be elucidated how deletion of this glycan can contribute to enhanced antibody responses and protection upon challenge. These findings provide new insights to improve the immunogenicity of RSV F in potential vaccine candidates.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas de ADN/administración & dosificación , Proteínas Virales de Fusión/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Femenino , Glicosilación , Humanos , Hidrólisis , Inmunización , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Mutación , Plásmidos/administración & dosificación , Plásmidos/genética , Plásmidos/inmunología , Ingeniería de Proteínas , Subunidades de Proteína/administración & dosificación , Subunidades de Proteína/genética , Subunidades de Proteína/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/genética , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Proteínas Virales de Fusión/administración & dosificación , Proteínas Virales de Fusión/inmunología , Carga Viral/efectos de los fármacos
7.
J Clin Virol ; 106: 34-40, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30031351

RESUMEN

BACKGROUND: Virus-specific molecular assays such as real-time polymerase chain reaction (RT-PCR) are regularly used as the gold standard to diagnose viral respiratory tract infections, but simultaneous detection of multiple different pathogens is often challenging. A multiplex digital method of RNA quantification, nCounter (NanoString Technologies), can overcome this disadvantage and identify, in a single reaction, the presence of different respiratory viruses. OBJECTIVES: To evaluate the accuracy of nCounter to identify and quantify RSV-A and RSV-B in nasopharyngeal aspirates (NPA) of children (6-23-months-old) with acute respiratory infection. STUDY DESIGN: NPA was collected at enrolment in a prospective cross-sectional study conducted in Salvador, Brazil. A quantitative RT-PCR with a subgroup-specific primer and probeset for RSV-A and RSV-B was performed in parallel with a customized nCounter probeset containing viral targets in NPA. RESULTS: Of 559 NPA tested, RSV was detected by RT-PCR in 139 (24.9%), by nCounter in 122 (21.8%) and by any method in 158 (28.3%) cases. Compared to the gold standard of qRT-PCR, sensitivity of nCounter was 74.3% (95%CI:63.3%-82.9% RSV-A) and 77.6% (95%CI:66.3%-85.9% RSV-B); specificity was 98.4% (95%CI:96.8%-99.2% RSV-A) and 97.8% (95%CI:96.0%-98.8% RSV-B); positive predictive value was 87.3% (95%CI:76.9%-93.4% RSV-A) and 82.5% (95%CI:71.4%-90.0% RSV-B) and negative predictive value was 96.1% (95%CI:94.1%-97.5% RSV-A), and 96.9% (95%CI:95.1%-98.2% RSV-B). Accuracy was 95.2% (95%CI:93.1%-96.7%) for RSV-A and 95.3% (95%CI:93.3%-96.9%) for RSV-B, while both methods significantly correlated for RSV-A (r = 0.44, p = 8 × 10-5) and RSV-B (r = 0.73, p = 3 × 10-12) quantification. CONCLUSIONS: nCounter is highly accurate in detecting RSV-A/B in NPA. Robustness and high-throughput multiplexing indicate its use in large-scale epidemiological studies.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , ARN Viral/análisis , Infecciones del Sistema Respiratorio/diagnóstico , Enfermedad Aguda/epidemiología , Brasil/epidemiología , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , Nasofaringe/virología , Estudios Prospectivos , Reproducibilidad de los Resultados , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Sensibilidad y Especificidad
8.
Medicine (Baltimore) ; 95(41): e5142, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27741144

RESUMEN

Respiratory syncytial virus (RSV) is one of the most common etiological agents of childhood respiratory infections globally. Information on seasonality of different antigenic groups is scarce. We aimed to describe the frequency, seasonality, and age of children infected by RSV antigenic groups A (RSVA) and B (RSVB) among children with ARI in a 4-year period.Children (6-23 months old) with respiratory infection for ≤7 days were enrolled in a prospective cross-sectional study, from September, 2009 to October, 2013, in Salvador, in a tropical region of Brazil. Upon recruitment, demographic, clinical data, and nasopharyngeal aspirates (NPA) were collected. A multiplex quantitative real-time polymerase chain reaction (RT-PCR) with a group-specific primer and probeset for RSVA and RSVB was used. Seasonal distribution of infection by RSV different antigenic groups was evaluated by Prais-Wisten regression.Of 560 cases, the mean age was 11.4 ±â€Š4.5 months and there were 287 (51.3%) girls. Overall, RSV was detected in 139 (24.8%; 95% CI: 21.4%-28.5%) cases, RSVA in 74 (13.2%; 95% CI: 10.6%-16.2%) cases, and RSVB in 67 (12.0%; 95% CI: 9.5%-14.9%) cases. Two (0.4%; 95% CI: 0.06%-1.2%) cases had coinfection. RSVA frequency was 9.6%, 18.4%, 21.6%, and 3.1% in 2010, 2011, 2012, and 2013, respectively. RSVB frequency was 19.2%, 0.7%, 1.4%, and 35.4% in the same years. RSVA was more frequently found from August to January than February to July (18.2% vs. 6.4%, P < 0.001). RSVB was more frequently found (P < 0.001) between March and June (36.0%) than July to October (1.0%) or November to February (1.6%). RSVB infection showed seasonal distribution and positive association with humidity (P = 0.02) whereas RSVA did not. RSVA was more common among children ≥1-year-old (17.8% vs. 1.8%; P = 0.02), as opposed to RSVB (11.5% vs. 12.2%; P = 0.8).One quarter of patients had RSV infection. RSVA compromised more frequently children aged ≥1 year. RSVA predominated in 2011 and 2012 whereas RSVB predominated in 2010 and 2013. In regard to months, RSVA was more frequent from August to January whereas RSVB was more often detected between March and June. Markedly different monthly as well as yearly patterns for RSVA and RSVB reveal independent RSV antigenic groups' epidemics.


Asunto(s)
ADN Viral/análisis , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Enfermedad Aguda , Brasil/epidemiología , Estudios Transversales , Femenino , Humanos , Incidencia , Lactante , Masculino , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Virus Sincitial Respiratorio/virología , Factores de Riesgo , Estaciones del Año
9.
J Clin Virol ; 69: 190-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26209405

RESUMEN

BACKGROUND: Acute respiratory tract infections (ARI) present a significant morbidity and pose a global health burden. Patients are frequently treated with antibiotics although ARI are most commonly caused by virus, strengthening the need for improved diagnostic methods. OBJECTIVES: Detect viral and bacterial RNA in nasopharyngeal aspirates (NPA) from children aged 6-23 months with ARI using nCounter. STUDY DESIGN: A custom-designed nCounter probeset containing viral and bacterial targets was tested in NPA of ARI patients. RESULTS: Initially, spiked control viral RNAs were detectable in ≥6.25 ng input RNA, indicating absence of inhibitors in NPA. nCounter applied to a larger NPA sample (n=61) enabled the multiplex detection of different pathogens: RNA viruses Parainfluenza virus (PIV 1-3) and RSV A-B in 21%, Human metapneumovirus (hMPV) in 5%, Bocavirus (BoV), CoV, Influenza virus (IV) A in 3% and, Rhinovirus (RV) in 2% of samples, respectively. RSV A-B was confirmed by Real Time PCR (86.2-96.9% agreement). DNA virus (AV) was detected at RNA level, reflecting viral replication, in 10% of samples. Bacterial transcripts from Staphylococcus aureus, Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, Mycoplasma pneumoniae and Chlamydophila pneumoniae were detected in 77, 69, 26, 8, 3 and 2% of samples, respectively. CONCLUSION: nCounter is robust and sensitive for the simultaneous detection of viral (both RNA and DNA) and bacterial transcripts in NPA with low RNA input (<10 ng). This medium-throughput technique will increase our understanding of ARI pathogenesis and may provide an evidence-based approach for the targeted and rational use of antibiotics in pediatric ARI.


Asunto(s)
Bacterias/genética , Perfilación de la Expresión Génica/métodos , ARN Bacteriano/análisis , ARN Viral/análisis , Infecciones del Sistema Respiratorio/microbiología , Virus/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Infecciones Bacterianas/diagnóstico , Humanos , Lactante , Reacción en Cadena de la Polimerasa Multiplex/métodos , Nasofaringe/microbiología , Filogenia , Infecciones del Sistema Respiratorio/diagnóstico , Sensibilidad y Especificidad , Virosis/diagnóstico , Virus/clasificación , Virus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA