Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(4): 1357-1372, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36074901

RESUMEN

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Asunto(s)
Epilepsia , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Epilepsia/genética , Adenosina Trifosfato
2.
Br J Haematol ; 200(2): 249-255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36177683

RESUMEN

Erythrocytosis is associated with increased red blood cell mass and can be either congenital or acquired. Congenital secondary causes are rare and include germline variants increasing haemoglobin (Hb)-oxygen affinity (e.g., Hb or bisphosphoglycerate mutase (BPGM) variants) or affecting oxygen-sensing pathway proteins. Here, we describe five adults from three kindreds with erythrocytosis associated with heterozygosity for BPGM variants, including one novel. Functional analyses showed partial BPGM deficiency, reduced 2,3-bisphosphoglycerate levels and/or increased Hb-oxygen affinity. We also review currently known BPGM variants. This study contributes to raising awareness of BPGM variants, and in particular that heterozygosity for BPGM deficiency may already manifest clinically.


Asunto(s)
Anemia Hemolítica , Errores Innatos del Metabolismo , Policitemia , Adulto , Humanos , Bisfosfoglicerato Mutasa/genética , Policitemia/congénito , Heterocigoto , Hemoglobinas , Oxígeno
3.
Brain ; 145(9): 2991-3009, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34431999

RESUMEN

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.


Asunto(s)
Epilepsia Generalizada , Síndromes Epilépticos , Discapacidad Intelectual , Canal de Sodio Activado por Voltaje NAV1.6 , Epilepsia Generalizada/tratamiento farmacológico , Epilepsia Generalizada/genética , Síndromes Epilépticos/tratamiento farmacológico , Síndromes Epilépticos/genética , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Pronóstico , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Bloqueadores de los Canales de Sodio/uso terapéutico
4.
Nephrol Dial Transplant ; 37(2): 349-357, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33306124

RESUMEN

BACKGROUND: Often only chronic kidney disease (CKD) patients with high likelihood of genetic disease are offered genetic testing. Early genetic testing could obviate the need for kidney biopsies, allowing for adequate prognostication and treatment. To test the viability of a 'genetics-first' approach for CKD, we performed genetic testing in a group of kidney transplant recipients aged <50 years, irrespective of cause of transplant. METHODS: From a cohort of 273 transplant patients, we selected 110 that were in care in the University Medical Center Utrecht, had DNA available and were without clear-cut non-genetic disease. Forty patients had been diagnosed with a genetic disease prior to enrollment; in 70 patients, we performed a whole-exome sequencing-based 379 gene panel analysis. RESULTS: Genetic analysis yielded a diagnosis in 51%. Extrapolated to the 273 patient cohort, who did not all fit the inclusion criteria, the diagnostic yield was still 21%. Retrospectively, in 43% of biopsied patients, the kidney biopsy would not have had added diagnostic value if genetic testing had been performed as a first-tier diagnostic. CONCLUSIONS: The burden of monogenic disease in transplant patients with end-stage kidney disease (ESKD) of any cause prior to the age of 50 years is between 21% and 51%. Early genetic testing can provide a non-invasive diagnostic, impacting prognostication and treatment, and obviating the need for an invasive biopsy. We conclude that in patients who expect to develop ESKD prior to the age of 50 years, genetic testing should be considered as first mode of diagnostics.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Estudios de Cohortes , Pruebas Genéticas , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/genética , Persona de Mediana Edad , Insuficiencia Renal Crónica/complicaciones , Estudios Retrospectivos
5.
J Med Genet ; 55(9): 578-586, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29970488

RESUMEN

BACKGROUND: Obesity is a global and severe health problem. Due to genetic heterogeneity, the identification of genetic defects in patients with obesity can be time consuming and costly. Therefore, we developed a custom diagnostic targeted next-generation sequencing (NGS)-based analysis to simultaneously identify mutations in 52 obesity-related genes. The aim of this study was to assess the diagnostic yield of this approach in patients with suspected genetic obesity. METHODS: DNA of 1230 patients with obesity (median BMI adults 43.6 kg/m2; median body mass index-SD children +3.4 SD) was analysed in the genome diagnostics section of the Department of Genetics of the UMC Utrecht (The Netherlands) by targeted analysis of 52 obesity-related genes. RESULTS: In 48 patients pathogenic mutations confirming the clinical diagnosis were detected. The majority of these were observed in the MC4R gene (18/48). In an additional 67 patients a probable pathogenic mutation was identified, necessitating further analysis to confirm the clinical relevance. CONCLUSIONS: NGS-based gene panel analysis in patients with obesity led to a definitive diagnosis of a genetic obesity disorder in 3.9% of obese probands, and a possible diagnosis in an additional 5.4% of obese probands. The highest yield was achieved in a selected paediatric subgroup, establishing a definitive diagnosis in 12 out of 164 children with severe early onset obesity (7.3%). These findings give a realistic insight in the diagnostic yield of genetic testing for patients with obesity and could help these patients to receive (future) personalised treatment.


Asunto(s)
Predisposición Genética a la Enfermedad , Pruebas Genéticas , Mutación , Obesidad/genética , Polimorfismo Genético , Adolescente , Adulto , Anciano , Índice de Masa Corporal , Niño , Preescolar , Femenino , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Países Bajos , Obesidad/diagnóstico , Linaje , Análisis de Secuencia de ADN , Adulto Joven
6.
J Am Soc Nephrol ; 29(6): 1772-1779, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29654215

RESUMEN

Background Nephronophthisis (NPH) is the most prevalent genetic cause for ESRD in children. However, little is known about the prevalence of NPH in adult-onset ESRD. Homozygous full gene deletions of the NPHP1 gene encoding nephrocystin-1 are a prominent cause of NPH. We determined the prevalence of NPH in adults by assessing homozygous NPHP1 full gene deletions in adult-onset ESRD.Methods Adult renal transplant recipients from five cohorts of the International Genetics and Translational Research in Transplantation Network (iGeneTRAiN) underwent single-nucleotide polymorphism genotyping. After quality control, we determined autosomal copy number variants (such as deletions) on the basis of median log2 ratios and B-allele frequency patterns. The findings were independently validated in one cohort. Patients were included in the analysis if they had adult-onset ESRD, defined as start of RRT at ≥18 years old.Results We included 5606 patients with adult-onset ESRD; 26 (0.5%) showed homozygous NPHP1 deletions. No donor controls showed homozygosity for this deletion. Median age at ESRD onset was 30 (range, 18-61) years old for patients with NPH, with 54% of patients age ≥30 years old. Notably, only three (12%) patients were phenotypically classified as having NPH, whereas most patients were defined as having CKD with unknown etiology (n=11; 42%).Conclusions Considering that other mutation types in NPHP1 or mutations in other NPH-causing genes were not analyzed, NPH is a relatively frequent monogenic cause of adult-onset ESRD. Because 88% of patients had not been clinically diagnosed with NPH, wider application of genetic testing in adult-onset ESRD may be warranted.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedades Renales Quísticas/epidemiología , Enfermedades Renales Quísticas/genética , Fallo Renal Crónico/genética , Proteínas de la Membrana/genética , Adolescente , Adulto , Factores de Edad , Proteínas del Citoesqueleto , Femenino , Eliminación de Gen , Dosificación de Gen , Homocigoto , Humanos , Incidencia , Enfermedades Renales Quísticas/complicaciones , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Prevalencia , Adulto Joven
8.
Hum Mol Genet ; 25(11): 2158-2167, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27005418

RESUMEN

We identified de novo nonsense variants in KIDINS220/ARMS in three unrelated patients with spastic paraplegia, intellectual disability, nystagmus, and obesity (SINO). KIDINS220 is an essential scaffold protein coordinating neurotrophin signal pathways in neurites and is spatially and temporally regulated in the brain. Molecular analysis of patients' variants confirmed expression and translation of truncated transcripts similar to recently characterized alternative terminal exon splice isoforms of KIDINS220 KIDINS220 undergoes extensive alternative splicing in specific neuronal populations and developmental time points, reflecting its complex role in neuronal maturation. In mice and humans, KIDINS220 is alternative spliced in the middle region as well as in the last exon. These full-length and KIDINS220 splice variants occur at precise moments in cortical, hippocampal, and motor neuron development, with splice variants similar to the variants seen in our patients and lacking the last exon of KIDINS220 occurring in adult rather than in embryonic brain. We conducted tissue-specific expression studies in zebrafish that resulted in spasms, confirming a functional link with disruption of the KIDINS220 levels in developing neurites. This work reveals a crucial physiological role of KIDINS220 in development and provides insight into how perturbation of the complex interplay of KIDINS220 isoforms and their relative expression can affect neuron control and human metabolism. Altogether, we here show that de novo protein-truncating KIDINS220 variants cause a new syndrome, SINO. This is the first report of KIDINS220 variants causing a human disease.


Asunto(s)
Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Nistagmo Congénito/genética , Obesidad/genética , Paraplejía/genética , Proteínas de Pez Cebra/genética , Empalme Alternativo/genética , Animales , Codón sin Sentido , Modelos Animales de Enfermedad , Humanos , Discapacidad Intelectual/fisiopatología , Neuritas/metabolismo , Neuritas/patología , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/patología , Nistagmo Congénito/fisiopatología , Obesidad/patología , Células PC12 , Paraplejía/fisiopatología , Unión Proteica/genética , Ratas , Transducción de Señal
9.
Pediatr Nephrol ; 33(10): 1701-1712, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29974258

RESUMEN

BACKGROUND: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling. METHODS: Forty patients from 36 families with nephronophthisis-related ciliopathy were recruited at university medical centers and online. Comprehensive clinical and genotypic data were recorded. Patients without molecular diagnosis were offered genetic analysis. RESULTS: Of 40 patients, 45% had isolated nephronophthisis, 48% syndromic diagnosis, and 7% nephronophthisis with extrarenal features not constituting a recognizable syndrome. Patients developed ESRD at median 13 years (range 5-47). Median age of symptom onset was 9 years in both isolated and syndromic forms (range 5-26 vs. 5-33). Common presenting symptoms were fatigue (42%), polydipsia/polyuria (33%), and hypertension (21%). Renal ultrasound showed small-to-normal-sized kidneys, increased echogenicity (65%), cysts (43%), and abnormal corticomedullary differentiation (32%). Renal biopsies in eight patients showed nonspecific signs of chronic kidney disease (CKD). Twenty-three patients (58%) had genetic diagnosis upon inclusion. Thirteen of those without a genetic diagnosis gave consent for genetic testing, and a cause was identified in five (38%). CONCLUSIONS: Nephronophthisis is genetically and phenotypically heterogeneous and should be considered in children and young adults presenting with persistent fatigue and polyuria, and in all patients with unexplained CKD. As symptom onset can occur into adulthood, presymptomatic monitoring of kidney function in syndromic ciliopathy patients should continue until at least age 30.


Asunto(s)
Ciliopatías/diagnóstico , Asesoramiento Genético , Pruebas Genéticas , Enfermedades Renales Quísticas/congénito , Fallo Renal Crónico/prevención & control , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Edad de Inicio , Biopsia , Niño , Ciliopatías/complicaciones , Ciliopatías/genética , Ciliopatías/patología , Proteínas del Citoesqueleto , Diagnóstico Tardío/prevención & control , Femenino , Humanos , Riñón/diagnóstico por imagen , Riñón/patología , Enfermedades Renales Quísticas/complicaciones , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Fallo Renal Crónico/etiología , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Países Bajos , Sistema de Registros/estadística & datos numéricos , Factores de Tiempo , Ultrasonografía , Secuenciación del Exoma , Adulto Joven
11.
N Engl J Med ; 371(20): 1900-7, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25390740

RESUMEN

Ketoacidosis is a potentially lethal condition caused by the imbalance between hepatic production and extrahepatic utilization of ketone bodies. We performed exome sequencing in a patient with recurrent, severe ketoacidosis and identified a homozygous frameshift mutation in the gene encoding monocarboxylate transporter 1 (SLC16A1, also called MCT1). Genetic analysis in 96 patients suspected of having ketolytic defects yielded seven additional inactivating mutations in MCT1, both homozygous and heterozygous. Mutational status was found to be correlated with ketoacidosis severity, MCT1 protein levels, and transport capacity. Thus, MCT1 deficiency is a novel cause of profound ketoacidosis; the present work suggests that MCT1-mediated ketone-body transport is needed to maintain acid-base balance.


Asunto(s)
Cuerpos Cetónicos/metabolismo , Cetosis/genética , Transportadores de Ácidos Monocarboxílicos/deficiencia , Transportadores de Ácidos Monocarboxílicos/genética , Mutación , Simportadores/deficiencia , Simportadores/genética , Transporte Biológico , Niño , Preescolar , Mutación del Sistema de Lectura , Genotipo , Humanos , Lactante , Cetonas/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiología , Polimorfismo de Nucleótido Simple , Simportadores/fisiología
12.
Eur J Pediatr ; 176(4): 515-519, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28188379

RESUMEN

This report describes a novel mutation of LAMB2, the gene associated with Pierson syndrome (microcoria-congenital nephrosis syndrome), in two female siblings. The c.970T>C p.(Cys324Arg) mutation in the LAMB2 gene affects one of the eight highly conserved cysteine residues within the first EGF-like module of the laminin ß2 protein. These residues form disulfide bonds in order to achieve a correct 3D structure of the protein. The reported phenotype is considered a relatively mild variant of Pierson syndrome and is associated with later-onset (18 months) therapy-resistant nephrotic syndrome leading to renal failure, and ocular abnormalities consisting of high myopia, microcoria, diverse retinal abnormalities, hence a low level of visual acuity. Importantly, the reported LAMB2 mutation was associated with normal neurological development in both siblings. CONCLUSION: this report presents the variability of the renal, ocular and neurological phenotypes associated with LAMB2 mutations and underscores the importance of ophthalmologic examination in all children with unexplained renal insufficiency or nephrotic syndrome. What is known • LAMB2 mutations are associated with Pierson syndrome • Pierson syndrome is associated with congenital nephrotic syndrome, microcoria and neurological deficits What is new • A novel mutation in the LAMB2 gene in two female siblings • Genotype and clinical phenotype description of a novel LAMB2 mutation.


Asunto(s)
Anomalías Múltiples/genética , Anomalías del Ojo/genética , Laminina/genética , Mutación , Insuficiencia Renal/cirugía , Niño , Preescolar , Anomalías del Ojo/patología , Femenino , Humanos , Riñón/patología , Glomérulos Renales/patología , Síndromes Miasténicos Congénitos , Nefrectomía , Síndrome Nefrótico , Fenotipo , Trastornos de la Pupila , Insuficiencia Renal/patología , Retina/diagnóstico por imagen , Retina/patología , Hermanos , Tomografía Óptica
13.
Kidney Int ; 89(2): 476-86, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26489027

RESUMEN

The leading cause of end-stage renal disease in children is attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Familial clustering and mouse models support the presence of monogenic causes. Genetic testing is insufficient as it mainly focuses on HNF1B and PAX2 mutations that are thought to explain CAKUT in 5­15% of patients. To identify novel, potentially pathogenic variants in additional genes, we designed a panel of genes identified from studies on familial forms of isolated or syndromic CAKUT and genes suggested by in vitro and in vivo CAKUT models. The coding exons of 208 genes were analyzed in 453 patients with CAKUT using next-generation sequencing. Rare truncating, splice-site variants, and non-synonymous variants, predicted to be deleterious and conserved, were prioritized as the most promising variants to have an effect on CAKUT. Previously reported disease-causing mutations were detected, but only five were fully penetrant causal mutations that improved diagnosis. We prioritized 148 candidate variants in 151 patients, found in 82 genes, for follow-up studies. Using a burden test, no significant excess of rare variants in any of the genes in our cohort compared with controls was found. Thus, in a study representing the largest set of genes analyzed in CAKUT patients to date, the contribution of previously implicated genes to CAKUT risk was significantly smaller than expected, and the disease may be more complex than previously assumed.


Asunto(s)
Anomalías Urogenitales/genética , Exones , Eliminación de Gen , Humanos , Análisis de Secuencia de ADN
14.
Haematologica ; 101(9): 1018-27, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27247322

RESUMEN

Ankyrin-R provides a key link between band 3 and the spectrin cytoskeleton that helps to maintain the highly specialized erythrocyte biconcave shape. Ankyrin deficiency results in fragile spherocytic erythrocytes with reduced band 3 and protein 4.2 expression. We use in vitro differentiation of erythroblasts transduced with shRNAs targeting ANK1 to generate erythroblasts and reticulocytes with a novel ankyrin-R 'near null' human phenotype with less than 5% of normal ankyrin expression. Using this model, we demonstrate that absence of ankyrin negatively impacts the reticulocyte expression of a variety of proteins, including band 3, glycophorin A, spectrin, adducin and, more strikingly, protein 4.2, CD44, CD47 and Rh/RhAG. Loss of band 3, which fails to form tetrameric complexes in the absence of ankyrin, alongside GPA, occurs due to reduced retention within the reticulocyte membrane during erythroblast enucleation. However, loss of RhAG is temporally and mechanistically distinct, occurring predominantly as a result of instability at the plasma membrane and lysosomal degradation prior to enucleation. Loss of Rh/RhAG was identified as common to erythrocytes with naturally occurring ankyrin deficiency and demonstrated to occur prior to enucleation in cultures of erythroblasts from a hereditary spherocytosis patient with severe ankyrin deficiency but not in those exhibiting milder reductions in expression. The identification of prominently reduced surface expression of Rh/RhAG in combination with direct evaluation of ankyrin expression using flow cytometry provides an efficient and rapid approach for the categorization of hereditary spherocytosis arising from ankyrin deficiency.


Asunto(s)
Ancirinas/deficiencia , Proteínas Sanguíneas/metabolismo , Eritroblastos/metabolismo , Membrana Eritrocítica/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/metabolismo , Eritroblastos/química , Eritroblastos/citología , Eritropoyesis/genética , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Unión Proteica , Multimerización de Proteína , Proteolisis , Esferocitosis Hereditaria/genética , Esferocitosis Hereditaria/metabolismo
15.
Nat Genet ; 39(7): 889-95, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17546029

RESUMEN

Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA. In a sixth family, the LCA5 transcript was completely absent. LCA5 is expressed widely throughout development, although the phenotype in affected individuals is limited to the eye. Lebercilin localizes to the connecting cilia of photoreceptors and to the microtubules, centrioles and primary cilia of cultured mammalian cells. Using tandem affinity purification, we identified 24 proteins that link lebercilin to centrosomal and ciliary functions. Members of this interactome represent candidate genes for LCA and other ciliopathies. Our findings emphasize the emerging role of disrupted ciliary processes in the molecular pathogenesis of LCA.


Asunto(s)
Proteínas del Ojo/genética , Proteínas Asociadas a Microtúbulos/genética , Atrofia Óptica Hereditaria de Leber/genética , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Cilios/genética , Codón sin Sentido , Proteínas del Ojo/metabolismo , Femenino , Mutación del Sistema de Lectura , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Linaje , Ratas , Ratas Wistar
16.
J Allergy Clin Immunol ; 133(2): 529-34, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24139496

RESUMEN

BACKGROUND: Primary immunodeficiency (PID) disorders are a heterogeneous group of inherited disorders caused by a variety of monogenetic immune defects. Thus far, mutations in more than 170 different genes causing PIDs have been described. A clear genotype-phenotype correlation is often not available, which makes a genetic diagnosis in patients with PIDs complex and laborious. OBJECTIVE: We sought to develop a robust, time-effective, and cost-effective diagnostic method to facilitate a genetic diagnosis in any of 170 known PID-related genes by using next-generation sequencing (NGS). METHODS: We used both targeted array-based and in-solution enrichment combined with a SOLiD sequencing platform and a bioinformatic pipeline developed in house to analyze genetic changes in the DNA of 41 patients with PIDs with known mutations and 26 patients with undiagnosed PIDs. RESULTS: This novel NGS-based method accurately detected point mutations (sensitivity and specificity >99% in covered regions) and exonic deletions (100% sensitivity and specificity). For the 170 genes of interest, the DNA coverage was greater than 20× in 90% to 95%. Nine PID-related genes proved not eligible for evaluation by using this NGS-based method because of inadequate coverage. The NGS method allowed us to make a genetic diagnosis in 4 of 26 patients who lacked a genetic diagnosis despite routine functional and genetic testing. Three of these patients proved to have an atypical presentation of previously described PIDs. CONCLUSION: This novel NGS tool facilitates accurate simultaneous detection of mutations in 161 of 170 known PID-related genes. In addition, these analyses will generate more insight into genotype-phenotype correlations for the different PID disorders.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Síndromes de Inmunodeficiencia/genética , Análisis de Secuencia de ADN , Adolescente , Adulto , Niño , Predisposición Genética a la Enfermedad , Humanos , Síndromes de Inmunodeficiencia/diagnóstico , Masculino , Mutación
17.
Kidney Int Rep ; 9(9): 2695-2704, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39291214

RESUMEN

Introduction: Genetic testing can reveal monogenic causes of kidney diseases, offering diagnostic, therapeutic, and prognostic benefits. Although single nucleotide variants (SNVs) and copy number variants (CNVs) can result in kidney disease, CNV analysis is not always included in genetic testing. Methods: We investigated the diagnostic value of CNV analysis in 2432 patients with kidney disease genetically tested at the University Medical Centre Utrecht between 2014 and May 2022. We combined previous diagnostic testing results, encompassing SNVs and CNVs, with newly acquired results based on retrospective CNV analysis. The reported yield considers both the American College of Medical Genetics and Genomics (ACMG) classification and whether the genotype actually results in disease. Results: We report a diagnostic yield of at least 23% for our complete diagnostic cohort. The total diagnostic yield based solely on CNVs was 2.4%. The overall contribution of CNV analysis, defined as the proportion of positive genetic tests requiring CNV analysis, was 10.5% and varied among different disease subcategories, with the highest impact seen in congenital anomalies of the kidney and urinary tract (CAKUT) and chronic kidney disease at a young age. We highlight the efficiency of exome-based CNV calling, which reduces the need for additional diagnostic tests. Furthermore, a complex structural variant, likely a COL4A4 founder variant, was identified. Additional findings unrelated to kidney diseases were reported in a small percentage of cases. Conclusion: In summary, this study demonstrates the substantial diagnostic value of CNV analysis, providing insights into its contribution to the diagnostic yield and advocating for its routine inclusion in genetic testing of patients with kidney disease.

18.
Nephron ; 148(8): 569-577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38447554

RESUMEN

Medullary sponge kidney (MSK) is a description of radiographic features. However, the pathogenesis of MSK remains unclear. MSK is supposed to be the cause of secondary distal renal tubular acidosis (dRTA), although there are case reports suggesting that MSK is a complication of primary dRTA. In addition to these reports, we report 3 patients with metabolic acidosis and MSK, in whom primary dRTA is confirmed by molecular genetic analyses of SLC4A1 and ATP6V1B1 genes. With a comprehensive genetics-first approach using the 100,000 Genomes Rare Diseases Project dataset, the association between MSK and primary dRTA is examined. We showed that many patients with MSK phenotypes are genetically tested with a gene panel which does not contain dRTA-associated genes, revealing opportunities for missed genetic diagnosis. Our cases highlight that the radiological description of MSK is not a straightforward disease or clinical phenotype. Therefore, when an MSK appearance is noted, a broader set of causes should be considered including genetic causes of primary dRTA as the underlying reason for medullary imaging abnormalities.


Asunto(s)
Acidosis Tubular Renal , Riñón Esponjoso Medular , Humanos , Riñón Esponjoso Medular/genética , Riñón Esponjoso Medular/complicaciones , Acidosis Tubular Renal/genética , Femenino , Masculino , ATPasas de Translocación de Protón Vacuolares/genética , Adulto , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Persona de Mediana Edad
19.
Hum Mutat ; 34(10): 1313-21, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23776008

RESUMEN

Next-generation sequencing (NGS) methods are being adopted by genome diagnostics laboratories worldwide. However, implementing NGS-based tests according to diagnostic standards is a challenge for individual laboratories. To facilitate the implementation of NGS in Dutch laboratories, the Dutch Society for Clinical Genetic Laboratory Diagnostics (VKGL) set up a working group in 2012. The results of their discussions are presented here. We provide best practice guidelines and criteria for implementing and validating NGS applications in a clinical setting. We introduce the concept of "diagnostic yield" as the main performance characteristic for evaluating diagnostic tests. We recommend that the laboratory procedures, including the tested genes, should be recorded in a publicly available document describing the complete "diagnostic routing." We also propose that laboratories should use a list of "core disease genes" for specific genetic diseases. This core list contains the essential genes for each disease, and they should all be included in a diagnostic test to establish a reliable and accurate molecular diagnosis. The guidelines will ensure a clear and standardized quality of care provided by genetic diagnostic laboratories. The best practice guidelines and criteria that are presented here were adopted by the VKGL in January 2013.


Asunto(s)
Pruebas Genéticas , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Laboratorio Clínico/métodos , Técnicas de Laboratorio Clínico/normas , Bases de Datos Genéticas , Pruebas Genéticas/métodos , Genómica/métodos , Humanos , Países Bajos , Guías de Práctica Clínica como Asunto
20.
Am J Hum Genet ; 86(2): 254-61, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20137777

RESUMEN

Frank-Ter Haar syndrome (FTHS), also known as Ter Haar syndrome, is an autosomal-recessive disorder characterized by skeletal, cardiovascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. We have conducted homozygosity mapping on patients representing 12 FTHS families. A locus on chromosome 5q35.1 was identified for which patients from nine families shared homozygosity. For one family, a homozygous deletion mapped exactly to the smallest region of overlapping homozygosity, which contains a single gene, SH3PXD2B. This gene encodes the TKS4 protein, a phox homology (PX) and Src homology 3 (SH3) domain-containing adaptor protein and Src substrate. This protein was recently shown to be involved in the formation of actin-rich membrane protrusions called podosomes or invadopodia, which coordinate pericellular proteolysis with cell migration. Mice lacking Tks4 also showed pronounced skeletal, eye, and cardiac abnormalities and phenocopied the majority of the defects associated with FTHS. These findings establish a role for TKS4 in FTHS and embryonic development. Mutation analysis revealed five different homozygous mutations in SH3PXD2B in seven FTHS families. No SH3PXD2B mutations were detected in six other FTHS families, demonstrating the genetic heterogeneity of this condition. Interestingly however, dermal fibroblasts from one of the individuals without an SH3PXD2B mutation nevertheless expressed lower levels of the TKS4 protein, suggesting a common mechanism underlying disease causation.


Asunto(s)
Anomalías Múltiples/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Anomalías del Ojo/complicaciones , Cardiopatías Congénitas/complicaciones , Anomalías Musculoesqueléticas/complicaciones , Mutación/genética , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Animales , Preescolar , Mapeo Cromosómico , Anomalías del Ojo/genética , Femenino , Silenciador del Gen , Cardiopatías Congénitas/genética , Homocigoto , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Anomalías Musculoesqueléticas/genética , Proteínas de Transferencia de Fosfolípidos/química , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA