Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Med Genet A ; 194(8): e63621, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567931

RESUMEN

GATA2 and ZNF148 have both been mapped to chromosome 3q. Pathogenic variants in GATA2 have been associated with immunodeficiency and high risk for myelodysplasia, acute myeloid leukemia, and chronic myelomonocytic leukemia. Gain-of-function variants in ZNF148 have previously been suggested as a mechanism for agenesis of the corpus callosum (ACC). Here, we report a novel 10.4 Mb interstitial deletion on 3q12.33q22.1 including GATA2 and ZNF148 in a child with developmental delay, agenesis of the corpus callosum, and vertebral segmentation defects. With this diagnosis, we were able to suggest preemptive referrals to hematology/oncology and allergy/immunology for close monitoring of early myelodysplasia. We also propose a possible link between ZNF148 loss of function variants and ACC.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 3 , Factor de Transcripción GATA2 , Factores de Transcripción , Humanos , Factor de Transcripción GATA2/genética , Cromosomas Humanos Par 3/genética , Factores de Transcripción/genética , Masculino , Proteínas de Unión al ADN/genética , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Femenino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología
2.
Am J Med Genet A ; : e63811, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980148

RESUMEN

There are currently multiple disorders of aminoacyl-tRNA synthetases described, including KARS1-related disorder resulting from dysfunctional lysyl-tRNA synthetases. In this report, we describe four novel KARS1 variants in three affected individuals, two of whom displayed arthrogryposis-like phenotypes, suggestive of phenotypic expansion. We also highlight subjective clinical improvement in one subject following lysine supplementation in conjunction with a protein-fortified diet, suggesting its potential as a novel treatment modality for KARS1-related disorders. This report offers additional insight into the etiology and management of KARS1-related disorders and expands our ability to provide guidance to affected individuals and their families.

3.
Dev Med Child Neurol ; 66(4): 445-455, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37469105

RESUMEN

Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.


Asunto(s)
Putrescina , Espermidina , Humanos , Niño , Putrescina/metabolismo , Putrescina/farmacología , Espermidina/metabolismo , Espermidina/farmacología , Poliaminas/metabolismo , Poliaminas/farmacología , Espermina/metabolismo , Espermina/farmacología , Eflornitina/farmacología
4.
BMC Pediatr ; 23(1): 1, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36593444

RESUMEN

BACKGROUND: Noonan Syndrome is caused by variants in a variety of genes found in the RAS/MAPK pathway. As more causative genes for Noonan Syndrome have been identified, more phenotype variability has been found, particularly congenital heart defects. Here, we report a case of dilated coronary arteries in a pediatric patient with a RIT1 variant to add to the body of literature around this rare presentation of Noonan Syndrome.  CASE PRESENTATION: A 2-month-old female was admitted due to increasing coronary artery dilation and elevated inflammatory markers. Rapid whole genome sequencing was performed and a likely pathogenic RIT1 variant was detected. This gene has been associated with a rare form of Noonan Syndrome and associated heart defects. Diagnosis of the RIT1 variant also gave reassurance about the patient's cardiac findings and allowed for more timely discharge as she was discharged to home the following day.  CONCLUSIONS: This case highlights the importance of the association between dilated coronary arteries and Noonan syndrome and that careful cardiac screening should be advised in patients diagnosed with Noonan syndrome. In addition, this case emphasizes the importance of involvement of other subspecialities to determine a diagnosis. Through multidisciplinary medicine, the patient was able to return home in a timely manner with a diagnosis and the reassurance that despite her dilated coronary arteries and elevated inflammatory markers there was no immediate concern to her health.


Asunto(s)
Cardiopatías Congénitas , Síndrome de Noonan , Humanos , Femenino , Síndrome de Noonan/complicaciones , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Vasos Coronarios/patología , Proteínas ras/metabolismo , Fenotipo , Mutación
5.
Pediatr Dermatol ; 40(3): 528-531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36443247

RESUMEN

Bachmann-Bupp syndrome (OMIM #619075) is a novel autosomal dominant disorder caused by variants in the c-terminus of the ornithine decarboxylase 1 gene, resulting in increased levels of ornithine decarboxylase. This case report includes two patients diagnosed with Bachmann-Bupp syndrome who were treated with difluoromethylornithine through compassionate use approval from the United States Food and Drug Administration. In both patients, treatment with difluoromethylornithine has resulted in improved dermatologic signs, including regrowth of eyebrow and scalp hair and cessation of recurrent follicular cyst development.


Asunto(s)
Eflornitina , Ornitina Descarboxilasa , Estados Unidos , Humanos , Eflornitina/uso terapéutico , Ornitina Descarboxilasa/genética , Inhibidores de la Ornitina Descarboxilasa , Ornitina
6.
Genet Med ; 24(10): 2065-2078, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35980381

RESUMEN

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Asunto(s)
Trastornos del Neurodesarrollo , Miosina Tipo IIB no Muscular , Actinas , Cilios/genética , Proteínas Hedgehog/genética , Humanos , Cadenas Pesadas de Miosina/genética , Trastornos del Neurodesarrollo/genética , Miosina Tipo IIB no Muscular/genética
8.
Am J Med Genet A ; 185(11): 3485-3493, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34477286

RESUMEN

Bachmann-Bupp syndrome (BABS) is a rare syndrome caused by gain-of-function variants in the C-terminus of ornithine decarboxylase (ODC coded by the ODC1 gene). BABS is characterized by developmental delay, macrocephaly, macrosomia, and an unusual pattern of non-congenital alopecia. Recent diagnosis of four more BABS patients provides further characterization of the phenotype of this syndrome including late-onset seizures in the oldest reported patient at 23 years of age, representing the first report for this phenotype in BABS. Neuroimaging abnormalities continue to be an inconsistent feature of the syndrome. This may be related to the yet unknown impact of ODC/polyamine dysregulation on the developing brain in this syndrome. Variants continue to cluster, providing support to a universal biochemical mechanism related to elevated ODC protein, enzyme activity, and abnormalities in polyamine levels. Recommendations for medical management can now be suggested as well as the potential for targeted molecular or metabolic testing when encountering this unique phenotype. The natural history of this syndrome will evolve with difluoromethylornithine (DFMO) therapy and raise new questions for further study and understanding.


Asunto(s)
Alopecia/genética , Discapacidades del Desarrollo/genética , Transportadores de Ácidos Dicarboxílicos/genética , Megalencefalia/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Adolescente , Adulto , Alopecia/diagnóstico , Alopecia/tratamiento farmacológico , Alopecia/patología , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/tratamiento farmacológico , Eflornitina/uso terapéutico , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Masculino , Megalencefalia/diagnóstico por imagen , Megalencefalia/tratamiento farmacológico , Megalencefalia/patología , Neuroimagen , Fenotipo , Poliaminas/metabolismo , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/patología , Adulto Joven
9.
Artículo en Inglés | MEDLINE | ID: mdl-36963805

RESUMEN

Osteogenesis imperfecta (OI) is a heritable disorder of bone metabolism characterized by multiple fractures with minimal trauma. Autosomal recessive OI type VIII is associated with biallelic pathogenic variants in P3H1 and classically characterized by skeletal anomalies in addition to significant bone fragility, sometimes presenting with in utero fractures and/or neonatal lethality. P3H1 encodes a collagen prolyl hydroxylase that critically 3-hydroxylates proline residue 986 on the α chain of collagen types I and II to achieve proper folding and assembly of mature collagen and is present in a complex with CRTAP and CypB. Most individuals with OI type VIII have had biallelic predicted loss-of-function variants leading to reduced or absent levels of P3H1 mRNA. The reported missense variants have all fallen in the catalytic domain of the protein and are thought to be associated with a milder phenotype. Here, we describe an infant presenting with five long bone fractures in the first year of life found to have a novel missense variant in trans with a nonsense variant in P3H1 without any other bony anomalies on imaging. We hypothesize that missense variants in the catalytic domain of P3H1 lead to decreased but not absent hydroxylation of Pro986, with preserved KDEL retention signal and complex stability, causing an attenuated phenotype.


Asunto(s)
Osteogénesis Imperfecta , Humanos , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Proteínas de la Matriz Extracelular/genética , Proteoglicanos/genética , Proteoglicanos/metabolismo , Chaperonas Moleculares/genética , Colágeno/genética , Colágeno/química , Colágeno/metabolismo , Fenotipo , Mutación
10.
Med Sci (Basel) ; 11(2)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37092498

RESUMEN

Recent identification of four additional polyaminopathies, including Bachmann-Bupp syndrome, have benefited from previous research on Snyder-Robinson syndrome in order to advance from research to treatment more quickly. As a result of the discovery of these conditions, the potential for treatment within this pathway, and for other possible unidentified polyaminopathies, the International Center for Polyamine Disorders (ICPD) was created to help promote understanding of these conditions, research opportunities, and appropriate care for families. This case study provides insights from two new patients diagnosed with Bachmann-Bupp syndrome, further expanding our understanding of this ultra-rare condition, as well as a general discussion about other known polyaminopathies. This work also presents considerations for collaborative research efforts across these conditions, along with others that are likely to be identified in time, and outlines the role that the ICPD hopes to fill as more patients with these polyaminopathies continue to be identified and diagnosed.


Asunto(s)
Eflornitina , Poliaminas , Humanos , Poliaminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA